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OF POOR QUALITY

The Finite AnalyUic 1_etl.od

This monogra[>h contains the £undamental development of

one new nuuerica± metilo_ called the "Finite Analytic" meuhod.

The finite analytic method differs from t_,e finite difference

method and the finite element methou. The bauic idea of _ne

finite analytic method is the incorporation of local analytic
solutions in the numerical solution of linear or nonlinear

[_artial differential equations. In the finite analytic method,

the total problem is subdivided into a number of small

elements. The local analytic solution is obtained for the

small element in which the governing equation, if nonlinear,

is linearized. The local analytic solutions are then expressed

in algebraic form _nd are overlappeu to cover the entire

region of ti_e problem. The assembly o_ these local analytic

solutions, wn_ "h still [.reserves t|lu over_ll ,,onlinearity of

the governing equation, results in a system of linear

_lgebraic equat±ons. The system of _lgebraic equations is then

solved to provide tile numerical solutions Oi the total pruulem.

Unlike the finite difference method, the finite analynic

method does not tamper with the differentials or the

derivatives of the gore[fling equation, nor does the analytic

method need the shape [unction which is made to satisfy the

integral form of the governing equetlon, as in the f±nit_

element method. The finite analytic solution obnained from the

Linite analytic method is differcntiable. As a result, the

derivative of the solutioil obtained analytically is much more

reliable. [n this monograpi, the finite analytic solution is

shown to be stable, even when the highest derivative tcrr_ of

the partial differential equation is multiplied by a small

[actor, such as one over Reynolds number. It is also shown that

the finite analytic solution for Nuvie_-Stokcs equatlons at

nigh Reynolds numbers automatically provides _ gradual si_ift

of the upwinding effect. Therefore the t:inite analytic solution

accurately simulates the e£fect o[ convection and eliminates

the false ,lumerical diffusion that would occur in the upwinding

difference or unidirection difference used in the finite

difference or the finite element methods. The computational

time for the finite anayltic solution is shown to be about

equal to that or the finite difference method. In certain cases,

due to the stability ot the system of algebraic equations

derived in the finite analyltc method, the. overall computational

time can bc even less. The finite analytic solution derived in

L_
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the present analytic uehtod is in its most elemel_tarYef°rmb i_J
terms of accuracy. But it has already been shown to

sufficient for the problems under consideration. Further

accurate finite analytic formulae can be derived J_,d are

indicated in the nonograph.

The finite anlytic raethod was developed in early 1977,
when D_. Peter Li was then a graduate student working on hi,,;

doctoral _issertation with me. [{e had been having difficulty in

obtainil,g convergence of a system of finite difference

algebraic equations derived from the Navier-Stokes equations

for t_o-dimensional turbulent flow with a second-order

turbulent model. I conceived the f_llite analytic _|ethod one

night and solved the simple two-dimensional Laplace equation.

Li then carried th_ finite analytic laethod to the unsteady

di_Lusion equation and nonlinear oLJinary differential

equations and complied his Ph.D. dissertation in 1978.

Iu 1982 Dr. Hamn-Ching Chen duveloped the finite analytic

method further by solving the unsteady three-dimensional

i:aviur-Ztol.e_ L.4uatlons. This Pound volume contaills the

research results o_ Dr. Chen and myself.
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DEVELOPMENT OF FINITE ANAYTIC METHOD FOR UNSTEADY

THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS



ABSTRACT

Unsteady ID, 2[_ and 3D incompz-essible Navie_'-:<t_,k,.s

equations are numet'ically analyzed by a numet'ica] scheme

called the "Fin[te Analytic Method". The basic idea o£ the

finite analytic method is the inco_'poration of a local

analytic solution jn the numez'ical solution of lineaY' and

nonlinear" paI'tial dJffel'ent[al equations. In this stud\.,

the local a .alytic solutions for unsteady ID, 2D and I_D

convective tt-ansport equations are obtained fl-om locally

]ineat_Jzed governing e<[uat_ons by specifying suitable

initial and boundar'y conditions for ,_.ach local t,lcm_,nt .

When the loc_{l analvt ic solution is evaluated at s £iv,,n

nodal point, _t gives an analytic algeb['aic relationship

between a nodal value in a local element to its neighboring

nodal points. The solution of the problt;m i,'_ then achi,,ved

by solving the system of a]geht'aic equations.

Depending on the boundary and in]t{al functions ,:host,n

to t'epPesent the, bounda_y .|rid [nit ia} con(lit ions [o_ _ t,.l_.h

local elemt, nt, .i number ot local analytic solutions al','

derived. Th,, t't,._ults show that the boundat'y appx'oximat ion

based on the combin._t {on o[ exponential and linea_' [unct i<_n

is the, be,st one sine," the, bounda_'V function thus cot_:;t_'_icted
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is the natural solution of the governing equation. The

finite analytic coefficients thus obtained are shown to be

relatively simple and do give the correct asymptotic beha-

vior for both diffusion and convection dominated cases.

The finite analytic method is employed to solve several

steady and unsteady fluid flow problems. In two-dimensional

cases, the Navier-Stokes equations are formulated using

both vorticity-streamfunction and primitive variables. The

finite analytic numerical solution is first obtained for

starting cavity flow of Reynolds numbers of i00, _00, i000,

2000 and 5000. Then the finite analytic formula is used to

obtain the numerical solutions for vortex shedding

phenomenon behind a rectangular block for Reynolds numbers

of i0, 50, i00, 200 and 500. In three dimensions, the

28-point finite analytic formula for unsteady convective

transport equation is employed to study a lhree-dimensional

cavity flow using primitive variable formulation. The

results are obtained for Reynolds numbers of I00 and 400.

In all test cases, the finite analytic solutions are shown

to be converge raDidly , and to be stable and accurate.
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CHAPTER I

INTRODUCTION

For the differential equation,_ which can not b_, :;o.l.v,,<l

analyti<'al]y, nunu_'ical methods a_'e employed. Mos( of _he

numerical methods including the finite analytic (FA) m_,thod

pz'esented in this study, bear the following simila_-ities.

Firstly, all methods decompose the total region gover'nt,d

by diffe_,e'tial equations into a numbe_' el small elements

and gl'id points, and thus replace the continuous ,,;olution

of differential equation with discrete value:; at a finite

number of grid point u or elements. .qe_-ondly, all method,a

derive an algebraic equation from the differential equation

with suitable difference approximations or suitable pt_ofile

functions of dependent variables between nodal poinls o_'

in the 'whole local element. Thip,lly, the resulting system

of algebt'aic equations is solved with given boundar\, and/or

initial condi_ ions to obtain the numerical solu# ions for

all of the grid points.

The numerical methods are distinguished from one

another depending on how the corresponding algebraic

representation of the different ial equdt ion is derived.

Two commonly used method',; in deriving the di.;crete



algebraic equation in the finite difference method are

Taylor-series and control volume formulations. While for

the finite element method, the variational formulations

and the method of weighted residuals are often used.

In Taylor-series formulation, the finite difference

algebraic equations are derived by approximating the

derivatives _n the differential equation via a truncated

Taylor-series. Depending on the order of truncation, many

alternate finite difference representations can be obtained.

The validity of this formulation, however, greatly depends

on how the truncation is made and how the difference Js

taken. For example, a truncated Taylor-series representa-

tion of an exponential profile often leads to unreasonable

results since the truncated tern.s may be much larger than

the terms retained when large exponents are encountered.

Furthermore, since the Taylor-series formulation based on

term by term difference approximation largely ignores the

character of the partial differential equation, an scot,rate

term by term finite difference analog for a partial differ-

ential equation does not necessarily lead to higher

accuracy for the differential equation. (see Roache [I],

for example). In fac_ , large errors usually called

"Numerical diffusion" may result and instability of the

solution o[ difference equation is often encountered.

A simple variant of Taylor-series formulation calle(l



polynomial fitting [I] for obtaining the finite difference

expression is to fit an analytic function with free para-

meters to the mesh-point values and then to differentiate

the function analytically. When polynomials are used as

the interpolation function, it is very similar to the

Taylor-series formulation although not identical beyond

the second-order polynomials. This method, however, has

not been generally used because the higher order poly-

nomial fits are sensitive to "noise" or small errors in

the data.

In fil ire element methods, the two most commonly used

formulations in obtaining the discretization (element)

equations are the energy methods and the residual methods

[2]. Use of the energy procedures requires knowledge of

variational calculus. The calculus of variation shows that

solving a differential equation is equivalent to

minimizing a related quantity called the functional. This

equivalence is known as variational principle. Depending on

the functional considered, a number of variational

formulation can be employed to derive the discretized

element equations. For example, the principle of stationary

potential al.d complementary energies and hybrid formu-

lations are commonly used in finite element applications.

The applicability of variational formulation in fluid

flow problems is, however, very limited because a
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variational principle does not always exist for

differential equations governing the fluid flows.

The method of weighted residuals is based on

minimization of the residual left after an approximate

or trial solution is substituted into the differential

equations governing a problem. The approximation function

is constructed in terms of some chosen known fu,_ctions

and a number of undetermined parameters. The residual left

is then minimized in some integral sense with suitable

weighting functions to determine the unknown parameters.

Depending on the weighting functions chosen to perform th_

integrations, many different versions of the method can

be derived. Among them are collocation, subdomain, least

square and Galerkin methods. The acc.racy of these methods

are, however, highly affected by the trial functions and

weighting functions used. Unless the physically realistic

shape functions and weighting functions are employed, the

resulting discretization equations may lead to

unacceptable solutions.

Another finite difference method of obtaining the

algebraic equation is to express the conservation

principle foF dependent variable for a finite control

volume, just as the differential equation expresses the

conservation laws for an infinitesimal control volume.

This c_in be done by integrating the differential equation
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over each non-overlapping control volume surrounding each

grid point. The control volume formulation can be regarded

as a variant of subdomain method of the method of weighted

residuals, but is more physical in its basis. The accuracy

of this formulation is, however, still greatly dependent

on the interpolation functions used between nodal points.

The finite analytic method presented by Chert et _l].

[3-8] invokes another means of deriving the algebraic

equations. Unlike the finite difference or finite eloment

method, the discretized algebraic equation is obtained

from the a,.alytic solution for each local element in the

finite analytic formulation. _)etails of the principle and

procedures in obtaining the finite analytic solution are

presented in Chapter II.

In fluid flow and heat transfer problems, certain

difficiculties such as numerical instability, false

nu,nerical diffusion and slow convergence are encountered

in solving Navier-Stokes equations and similar conve_:tive

transport equations when convective terms are significant.

In finite difference formulations,the difficulty of the

numerical instability has been overcome by considering a

central difference approximation for the diffusion term

and a backward (upwind) difference for the convective

term [9,10]. Spadli_,g [9] improved th_ reuult by

utilizing the exact solution for steady one-dimensional
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_'onve_'tiw' IP, insporl ,',]uation tO derive an exponent ial

.';t'h,_m,',and th,.1_ _1_'t!icr simplified _o the hybrid .,_chem_..

Runchal [I0] compa_'ed the numer'ical solution of a simple

two-dimensional test pr'oblem obtained by hybrid scheme [9]

with those oblained by upwind and central difier'ence

tormul,_ions, and concluded that based on accuracy and

stability, the hybt'id scheme i.s pz,efez, able. Patanka_' [111

gave ,i t,_,t_or .ipt,rox.imation called "pow_u'-law ."cheme" to

the _,x,_t't soltlt ioT,, ,ind t,sed it e×tensivolv in the control

volumt' lt)l'tl/ul,tt iol_s ot ?P and 3D tln:_te._..i\" conv,'_'t ivt,

transport problems..

The all.-t,o.'it ive ,'oeffic[ent,; fop the l,_,.,;tiltJn,_.

algeb_'ai<- equal ion thus obtained lead to a stable solulion

b_,caust, the T't'sult in_,. system of algebraic equ,_t ions i:_

diagonally-dominant, ttowever, as shown in Patankar [11],

1he false numeri,'al diffusion occurs when the flow _s in

,l skew di,-et-t [_n to the g,-id lines, and when there is a

non:.el'o _radi,,nt of the dependent va_'iab]es in t_,,

di_'ec'tion normal to the-, flow. l'h,' false" numet'i_'al ,littus[on

,'._n b_, t,arl i,_llv _'e'._oIv_,,t by Pedu,'ir_g the f ri,t siz,' o_'

taking mor'_, r_o,lal !,oit,_s into aecot, t_t [n the tot'mu]ation

_,t ,!ist'ret [.,:,_t i,_; ,'quations in ea,:h -_ma]l local element.

In two-dimensional problems, a numbeP of finite difforem-,-

formula,,; were p,'opo._ed, _n additional to regular four node

formulation, t_ _n_'l_ld,, p,tr't or all of the fo_**' _'t,l'n_,r
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points so that the false numez'i('a[ diffusion can be

_'educed. Works of Raithbv [12] and Shav [13] which wiJ]

be discussed in _'h,tpter IV are ,¢ion_c exdn',ple:;. 'they ,t_',.,

howevel', produced some undesirable negative coelf[cients

{.n the algebraic equation representing the partial

differential equ¢_t ton due to i nad_quate t ir_ite dif[erence

17ormulat ions. Fur'thermore, the extension ot the above

method_; to the'co-dimensions to ir>-lude 20 come,, t,oint::

is not obvious or s*raightforw,tY,,t.

In finite element fo_'mulat]on, n :;imple "upwind"

scheme was '.erived in [14,15] by improving the weighting

function of st,ln,lnrd Galerkin for'mulat ion with modityi_g

functions and a set of opt[real p,_I',Lmeter:;. The 9-point

formula *bus obtained provides ,_ ,_;t'adual shift *o upwind

when convect ive repro,,; are ";igntt [c,tnt. t{owev_,p, when

exitmining both the diffusion an_! convection dominated

cases, it [,_; found th,lt the re,quit ing 0-point foI'mul,i [15 ]

does not give tl,.,, phys[edlly re,t.listic ,l:;ympt_tic

beh,_vior:;. !_,'ui,l,',;. when non_mttopm g_'i,I spd,'ing [:;

,'offside, red, 1t1,, _',',q_tlts may becom,, ir_cr,',t-;in_, unred,;on.lbl_,.

In [inite ,inalvtic formulation, the local analytic

:;olut ion for' uteady two-d[men,,;[or_al _'o_vc,'t ire tr',tn:;port

eqllat ion in ,i :ira,ill loc,_l t:lement was ,_b_,_ined in Chen

et al . [!,,6] by locally 1 ineack:'.,:d the governing equat ion,';.

They adopted the second-order polvr, omia] to approximat.,



ORIGINAL F_;'.C_ [3

OF POOR QUALi.'Y

the boundary condition for all boundaries in each local

element. When the local analytic solution is evaluated at

a given nodal point_ a 9-point finite analytic algebraic

equation is obtained. The 9-point FA formula exhibits a

gradual_ proper skew upwind shift, which is considerably

better than those given in [12-15]. However, for convection

dominated eases, i.e._ at large cell Reynolds number or

Peclet number, the finite analytic algebraic equation

still produced some physically unrealistic, although small,

negative FA coefficients. While the finite analytic

solution given by Chen et al. [5_6] is stable

and accurate_ the complexity of the local analytic

solution made it undesirable for extension to unsteady

three-dimensional fluid flow problems. It now becomes

clear that the appearance of small negative FA

coefficients and the complexity of analytic solution

originate from the polynomial approximation of boundary

conditions made for each local element.

In this dissertation, the finite analytic solutions

for unsteady ID, 2D and 3D convective transport equations

are derived in uniform and nonuniform grid spacing local

elements. Significan_ improvements are reported in

two-dimensional c:ase when compared with the finite ana]yt_c

solution obtained by Chen et al. [S,6]. In studying the

unsteady one-dimensional convective transport equations,
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a number of initial _nd boundary functions are used to

derive finite solutions. Three of them are employed to

solve some simple test problems. For two-dimensional

cases, the finite analytic solution for steady

two-dimensional Navier'-Stokes equ_t:ious derived by Chen

et al. [5,6] is modified by cons[de_'ing the boundary

approximation to be a combination of exponential a_d

linear functions. I'urthermore, an improved linearization

scheme is proposed so theft the higher order variation or

convective terms [n the local element can be properly

accounted t,_'. The finite analytic solutioz_ for nonuni[oI'm

grid spacing local element is then derived so That the

effi_:ieT_cy of computation is improved. As a resul_ of

present study, a reasonable sel of FA coefficients is

obtained and comput,lt ional time is short t:ned becduse of

the significant simplification of the FA fo,'mula.

Extending the two-dimensional study, a ?8-point [ini_e

analytic formula for unsteady three-dimensional convective

transport equations is similarly derived in a gen_,,-,_l

nonuniform gt'id spacing local element.

In Chapte," If, the principle of finite analytic

method is outlined. It follows in Chapter Ill witr_ th, •

finite analytic solutions for unsteady ]D, PD and 3D

convective transport ,,quations. A number of initial an,l

boundary functions are investigated in both unifol'm and
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nonuniform grid spacing local elements. A linearization

scheme associated with the higher order correction of

convective terms is also outlined. Details of the

derivations are given in Appendices A, B and C for ID,

2D and 3D cases respectively.

The finite analytic numerical solutions of steady

and unsteady convective transport equations for some

typical examples are given in Chapter IV. The accuracy of

the present FA method is demonstrated by a comparison of

FA coefficients with those 9-point formulas obtained in

finite differepce, finite element and those obtained in

the early study of finite analytic methods.

In Chapter V, the detailed numerical procedures

associated with the finite analytic methods in solving

fluid flow or heat transfer problems ape outlined. In

Chapter VI, simple test problems for one-dimensional

convective transport equation are numerically analyzed.

It follows {n Chapter VTI with two test problems of

simple geometry for two-dimensional Navier-Stokes

equations. The two-dimensional starting cavity flow is

investigated first with a range of Reynolds numbers using

both the vorlicity-streamfunction and the primitive

variable formulal ions. The vortex shedding phenomenon is

then studied _or uniform flows passing a rectangular

block at several Reynolds numbers. In Chapter VIII, the
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28-t_oint }'A toz'mula for unsteady three-dimension_il

coi_w,,'t Eve ti'ai_,.;pot't equ.ltions is emploved to study the

side w.il[ ette_t fop cubic cavity flow.

Th:, last _-h<iptel' of this di:;sertatit_n summai'i.:,::.

tht, kev finalities and conclusions and sug_,,ests tutui'_,

t'eSt*dl'_'ht':_ .

11
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CHAPTER II

PRINCIPLE OF FINITE ANALYTIC METHOD FOR

UNSTEADY THREE-DIMENSIONAL

CONVECTIVE TRANSPORT EQUATION

The basic idea of the finite analytic method is the

incorporation of a local analytic solution into the

numerical solution of the partial differential equations.

The finite analytic method decomposes the total region of

a problem governed by partial differential equations into

a number of small elements in which local analytic

solutions are obtained due to the simple geometry and to

local linearization in the case of nonlinear problems.

When the local analytic solution is evaluated at an

interior node, it gives an algebraic equation relating the

evaluated interior nodal value to its neighboring nodal

values. The numerical solution of the total problem is then

achieved by assembling and overlapping all local analytic

solutions.

To illustrate the basic principle, a partial

differential equation for unsteady three-dimensional flow

LI(¢) = F 1 is considered as an example, where the operator

L1 can be linear oz' nonlinear, and F 1 is an inhomogeneous

source term. l.et x, y, z and t be the independent variables
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in space and time, respectively. The PDE is to be solved in

the region D shown in Fig. i. Let the boundary and initial

conditions be specified so that the problem is well-posed.

In order to solve the problem with the FA method, the

complex geometry of the problem is broken up into a number

of small elements where analytic solutions can be obtained.

Let the region D be subdivided into small elements shown in

Fig. 1 by passing orthogonal planes through the region. A

typical local element with the nodal point P(i,j,k,n) may

be surrounded by the neighboring 26 points NET (northeast

top), ECT _eastcenter top), EC (east center) etc. and those

of previous time steps, which correspond to points (i+l,

j+l,k÷l,n), (i+l,j,k÷l,n), (i+l,_,k,n) etc. and those at

previous time steps n-i and/or n-2 respectively.

Once the region D has been subdivided into small

rectangular elements, the analytic solution in each local

element may be obtained if the boundary and initial

conditions for that element are properly specified. In the

case when the PDE is nonlinear, the nonlinear equation may

be locally linearized in the small element. In this

fashion, the overall nonlinear effect can still be

approximately presented by the assembling of local analytic

solutions which constitute the numerical solution of the

governing PDE over the whole region D.

Let L(¢) : F be linear or linearized governing
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equation of LI(¢) : F 1 in a small local element shown in

Fig. ], so that an analytic solution can be obtained for

the local element as a function of the boundary and initial

conditions, i.e.,

¢ : f(fT(x,y,t), fB(x,y,t), fE(y,z,t), fw(y,z,t),

fN(x,z,t), fs(X,Z,t), fI(x,y,z), h T h B,

h E h N I, x, y, z, t, F), h W , , h s , (II-l)

where fl is the initial condition and fT' fB' fE' fw' fN

and fS ape the top, bottom, eastez,n, western, northern and

southern boundary conditions, respectively, hT, hB, hE, hw,

hN, h S and r are respectively the grid sizes in x, y, z

direction and the step size in time domain. For numerical

purpose, the boundary and initial conditions may be

approximately expressed in terms of the nodal values along

the boundary and also those values at the initial time

step. For example,

and

n n , en n n , ¢n nfT : f(@NET' eNWT SET' ¢SWT' eECT WCT' eNCT'

n n n- ] n_ 1_SCT' ¢TC, eNFT' ..... eT x, y, t)

[( .n-I n-I n-i n-]
: _NET ....... #TC ' CNE}_ ....... CBC '

(TT-2a)

¢_-i n-IEC' ..... eP , x, y, z) (ll-2b)

where ¢'s are the values of the dependent variables on nodal
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points, and the superscripts n and n-1 denote those values

at present dnd previous time steps respectively.

Substituting the boundary and inltial conditions

(II-2a) etc. and ([l-2b) into eq(II-11), one has

n n n n
$ = f(_NET' ..... _TC' _NEB' ...... _BC'

n

NL'C ' I o

n n-I
¢SC' @NET" .....

n-i n-I n-]
q_TC ' qbNEB' .... qbBC '

n-I

4,NEC ,.....

n-i

_bp , hT, h B, hE , hW, hN, hS,

_, X, y, z, t, F) (ii-3)

Evaluating eq(II-3) at an interior point P(0,0,0,_), one

has the one-time step 54 point finite analytic formula for

the interior nodal value #p as

n 25 cn n 27 cn_l n-I C-Fp4_p = Y- nbqbnb + _ nb qbnb ÷ (If-q)

1 1

where Cn' C n-l's and s are FA coefficients obtained from the

local analytic solution, the subscript "nb" denotes a

neighboring node to point P, and Fp is the value of the

inhomogeneous term at the point P.
D

If steady 3D flow is considered, eq(II-q) reduces
L

to a 27-point FA formula

26

: Z b __ _ + b_F
I nD nD V p

(II-5_
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In general, eq(II-4) may be derived for each unknown

nodal point P(i,j,k,n) in internal small elements

i+l j+l k+l

n = I Z E (1-6 i 6 6rk)C p P
$ijk p=i-i q:j-i r=k-i p qj qr ¢ qr

i+ll j+17 k+ii ^n-i n-i + C'

p=i-I q=j-i r:k-i UpqrQpqr i]kFijk (II-6)

where 6pi, 6qj and 6rk are Kroneeker deltas defined as

6 : I, if p=i etc.

pi O, if p_i

It should be remarked here that there are several

possible ways other than the one presented here that may be

employed to simulate the unsteady behavior of the problem.

For example, the Two-time step FA formulation or hybrid FA

and FD formulation are possible alternatives. Because of

the parabolic behavior in time domain, the approximations

made on the unsteady may cause least problems. Thus, simpler

appr'oximate formulas can be used to reduce the complexity

of unsteady flow problems, especially when the intermedidte

time steps serve as a numerical step in obtaining steady

or large time solution. For simplicity and computational

economics, the hybrid method, which approximates the

unsteady term by a finite difference formula is adopted
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in the present FA solution of unsteady two- and three-

dimensional Navier-Stokes equations. For three-dimensional

case, a 28-point FA formula instead of the 54-point formula

(II-6) can be obtained for an internal node P(i,j,k,n), i.e,

i+l j+l k+l

n n _ Z Z (I - 6pi_ - n n
CP : ¢ijk : p:i-i q:j-i r=k-i q]6rk)CpqrCpqr

+ C_T l'n-I C!
1]k@ijk + ljkFijk (II-7)

The system of algebraic equations for all unknown nodes of

i, j, k at a given time interval n can be solved to provide

the finite analytic solution of the Navior-Stokes equations.
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CHAPTER III

FINITE ANALYTIC SOLUTIONS FOR UNSTEADY

CONVECTIVE TRANSPORT EQUATIONS

Fluid flow and heat transfer problems, in general,

are described by a set of partial differential equations

which are mathematical formulation of laws of conservation

of mass, momentum and energy. For example, if the fluid is

laminar, incompressible with a constant viscosity, the

conservation of mass and momentum equations are decoupled

from the conservation of energy equation, and can be written

in dimensionless form as

(i) Equation of Continuity

u + v + w = 0 (III-l)
x y z

(2) Momentum (Navier-Stokes) Equations

1
u t + uu + vu + wu : -Px + _(u + u + u

)
× y z x× yy zz

(III-2)

+ uv + vv + wv : -Py + Kel(vxx + v + Vzz)v t x y Z yy

(I[I-3)

vw + ww : -Pz + R_(Wxx + w + Wzz)wt + UWx + y z yy

(III-4)

where x, y and z are dimensionless Cartesian coordinates
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normalized by a reference length L. u, v, w and p are

dimensionless velocities and pressure normalized respec-

tively by a reference velocity U and a reference pressure

oU 2 and t is the dimensionless time coordinate normalized

UL
by a reference time scale L/U. Re:-- is _he Reyr_olds humbler.

The corresponding heat transfer in unsteady fluid flow can

also be found from the dimensionless energy equation

(3) Energy Equation (constant thermal conductivity k)

+ vT +wT = q + p_( T ÷ T + T ) (III-5)Tt + UTx y z xx yy zz

where the Peclet number Pe is PPRe, and Pr is the Prandtl

number, q is a heat source generated by radiation, viscous

dissipation, etc.

In many engineering applications, the physical

quantitie_ considered may depend on one or two space

coordinate only. For these cases, eqs(III-l) thru (III-5)

can be further simplified, and the manipulation effort

required to obtain the analytic or numerical solution is

significantly reduced.

In thiu study, the FA method is first employed to

obtain the finite analytic solutions of simple ID problems.

Alternatives for the boundary and initial functions are

investigated in this simple case. The optimal one is then

extended to derive the finite analytic solution fop two and

three dimensional fluid flow and heat transfer problems.
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III-I Finite Analytic Solutions for Unsteady One-Dimensional
Convective Transport Equations ........

For some extremely simple or simplified fluid flow

and heat transfer problems which depend on only one space

coordinate, an unsteady one-dimensional convective transport

equation of the form of

Cxx = R(¢t ÷ U¢x) + F(x,t) (III-6)

is often encountered, where the c_onvective velocity u may

be a function of independent variables x, t and dependent

variable @. For example, the Burgers' equation which was

introduced by Burgers [16] as a simple model for the

one-dimensional fluid flow is the one with u =¢ and F = 0.

Except for some simple cases, the analytic solution

for eq(III-6) may not exist due to the nonlinearity,

complicated convective velocity and source function, and/oP

complex initial and boundary conditions. Thus the finite

analytic numerical me%hod is employed in this study to

formulate the disepetization equations, so that an

appFoximate numerical solution can be obtained.

Considered a domain D shown in Fig. 2. For numerical

purposes, tht, regiol, D is subdivide,l into many small

elements, and the analytic solution is sought in

each local element. A typical two-time step local element

shown in Fig. 2(b) for point NC(i,n) is surrounded by
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exx : 2A_x ÷ Bet (III-8)

is considered in the following derivations.

Depending on the boundary and initial functions chosen

to approximate the boundary and initial conditions for

different local elements, three FA solutions are given to

illustrate the basic principle of the finite analytic

method. Three solutions of eq(III-8) are distinguished by

the following formuldtions.

(i) FA formulation of eq(/II-8) with second-order

polynomial approximation for both initial and

boundary functions.

(2) FA formulation of eq(III-8) with exponential and

linear approximation for initial function and

linear approximation for boundary functions.

(3) FA formulation of eq(lll-8) with unsteady term

approximated by a finite difference formula. This

is a hybrid FA-FD method.

III-l-i FA formulation of Unsteady One-Dimensional

Convective Transport Equation with

Second-Order Polynomial Initial and

Boundary Functions

In this section, the linear or linearized unsteady

one-dimensional convective transport equation (lIT-8) is



solved by finite analytic numerical method in a two-time

step local element shown in Fig. 2(b). }'or the convective

transport equation to be well-posed in the local element

shown, an initial condition _I(X) and two boundary condi-

tions _w(t) and _E(t) must be properly specified along the

south, west and east sides of the local element respec-

tively. Since each side, for numerical purpose, has three

nodal values available, one may approximate the initial

and boundary conditions by suitable initial and boundary

functions which ape expressed in terms of these nodal

values. Th__,e are several initial and boundary functions

which may be used to obtain the approximate initial and

boundary conditions. In this case, a second-order poly-

nomial is employed to approximate both the initial and

boundary conditions as follows

23

2

_(x,0) - ¢i(x) - a S + bsX + csx

2
_(-h,t): _4(t) : a w + bwt + Cwt

%(h,t) = CE(t) : a E + bet + cEt

where

as : ¢SC' bs : _(¢SE - ¢SW )'

_ 1 ( + _
Cs - 2h_ ¢SE ¢SW 2¢SC)

aw : Csw' bw : _(qCWC - 3¢SW - CNW )

(lll-ga)

(llI-gb)

(III-8c)
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Cw _ I___( + _
- 2 2 ¢SW ¢NW 2_WC)

aE -- ¢SE" bE = I(_EC - 3¢SE -¢NE )

CE = i_._( , - 2 )
22 ¢SE tNE tEC

The linear partial differential equation (III-8) with

initial condition (III-ga) and boundary conditions (III-gb)

and (III-9c) can then be solved analytically by the method

of separation of variables. Details of the derivation ape

given in Sec. A-I of Appendix A. The local analytic

solution when evaluated at the North-Center node (0,2_)

gives a finite analytic algebraic equation relating

the interior nodal value tNC and its 7 neighboring nodal

values as follows

tNC = CNWtNW + CNEtNE + CWCtWC + CECtEC + CSW¢SW

+ CSE¢SE + CSC¢SC (III-10)

where

_ _ Bh 2 2
Bh2(p 2 + + _( T,/-T--)(Q - P3)]CNW = eAh [QI 2T Q2 ) 3

-2AhcN WCNE = e

= (Bh 2 ) Bh 2 2
CWC eAh [4 _ (P2 + Q2 ) - 8( .17T"-) (Q3- P3 )]

CEC : e-2AhCw C
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C_W " e Ah [-F'? - 3AhP2 + M(Ah)2P3 - (Bh2_(3P22T" + Q2)

+ _(._Th2-)_(Q3 - P3 )] ÷e'Ah i-P2 ' AhP.,_ + _(Ah)2p31

: Bh 2 ,
CSE e-Ah[-P2 _ 3AhP? + q(Ah)2P3 - (2--_(3P2 ÷ Q2 )

* _(Bh-_'I22T(QJ - P3 )l ÷ eAh i-P? - AhP,,. + _(Ah)2p_I.

CSC : eAh [?P, + 4AhP,_ -H(Ah)TP3 ] + e-Ah [2P2 - tCAhP",

- _(Ah)" P ]
3

whe_,e P.,, P , Q._. 3' Q] . and Q3 are defined by

P. : E
J" m=l

-(-l)mA h e-2Fm I
Ill

'_ 2i
[(Ah)'+(_ h) ]

, [ = .,3 (llI-lla)

o, -( -i )mk h
In

Qi : Z ........
m:l l(Ah)" +(_ h)21 j

In

[ = 1 ,2,3 (Ill-llb)

with

(Ah)?+(. _ h) 2

m ½T = _ and I h = (m - )11
2Fro Bh"/?t m

Th_'ee ot th,, five summatiot_ le,,ms QI' Q2 and Q3 may

be expr'essed analytically as those given in Appendix A to

save some coml_utational time, [.e.,
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(ITT-12a)

(IIl-12b)

1 sinhAh

16(Ah) _co,ghAh 16(Ah) os h

I

8(Ah)'cosh'Ah
(lI[-12e)

It i,'_ noted that the FA coefficients in eq(III-10)

2Bh
are tunct ion:, ot Ah and _ only. The ratio ot the para-

2At tlt £,; known to be the Coumant number Ill
meter's -_- -- -_ = C D -

Thus, the }'A coettieients can also be written as

Ah(p 2 + 3Q.,) + 4(Ah)2(Q] - P3 )]CNW : eAh [QI ('0 " CO "

AhCN wCNE : e

Ah (UAh_ [p., ÷ Q7 '(Ah_(Q,t ,_CWt, ,.... (:- - . .... p )10 " C0

- ' Ah ,
CE(' : '" _W_"

C
SW

Ah . ): (" [_(l+3Ah)p 2 _ i_(Ah)2p (Ah
3 q)(31'2÷Q2

• l_(A-h)'(Q3-p )] • e -Ah [(_l,Ah)P 2 + U(Ah)2P3 ]
C0
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CSE = e Ah [(_l÷3Ah)P2 + _(Ah)2p Ah)
3 - (i_0 (3P2_Q2)

÷ 4(c_h)2(q3-P3)] + eAh [-(I+Ah)P2 ÷q(Ah)2P31

CSC = e Ah [2(l+2Ah)P2 - 8(Ah)2P3 ] + e -Ah [2(l_2Ah)P2

- 8(Ah)2p ]
3

(111-13)

It should be remarked here that a simpler FA solution

based on linear boundary conditions can be derived easily

in an one-time step local element by letting _WC = 0"5(¢NW

+ #SW ) ant' SEC = 0.5(¢NE + $SE ) in eq(III-10). The

one-time step FA formula thus obtained [s used for initial

time step o5 calculation with a time increment of 0.5_.

The two-time step F_ formula is then employed to obtain

the subsequent FA numerical solutions.

III-l-2 FA Formulation of Unsteady One-Dimensional Convec-

tive Transport Equation with Exponential and Linear

Initial Function and Linear Boundary Functions

In the previous formulation, some of the FA

coefficients in eq(lll-10) may become negative for many

combinations of Ah and Courant number C 0. The negative FA

coefficients although small, may result in an unrealistic

overshoot for some of the problems considered. In order to

avoid ther;(' unr,,alistic ne_ative FA co,zffi(_[ents, an expo-

nential and linear function based on the natural solutions
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(e2AX,Bx-2At) of eq(III-8) is employed in this formulation

to approximate the initial condition for the one-time step

local element shown in Fig. 2(e). As to the boundary

conditions, simple linear boundary functions are used in

terms of two nodal variables available on each boundary.

¢(x,0) =$I(X) = as(e2AX - 1) + bsX + c S (lll-lqa)

¢(-h,t)=$w(t) : a W + bwt (lll-14b)

¢(h,t) =¢E(t) = a E + bEt

where

¢SE + ¢SW -2¢SC

as 4sinh2Ah

¢SE - ¢SW - c°thAh(¢sE + ¢SW - 2¢SC)

bs : 2h

(!II-14c)

CS : ¢SC

aw = ¢SW' bw :

¢WC- ¢SW

a E : ¢Sr, b E :

CEC- _SE

After sp_cifying the initial[ and boundary conditions

(rI]-14a)- (TT[-lUc) for the small local element shown in

Fig. 2(c), the ]in,,ar convec¢ive transport equation (III-_)

is then solved analytically by the method of separation of

variables. The local analytic solution when evaluated at
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the interior point P(0,T) will result in a finite analytic

algebraic equation relating the interior nodal value Cp to

its 5 neighboring nodal values_ i.e.,

Cp : CWCCWC + CECCEC + CSW¢SW + CSE¢S£ + CSC¢SC

(III-15)

where

Cwc : eAh [QI
Bh2(

+ --_---P2- Q2 )]

CEC = e-2AhCw C

Ah
CSW : e

Bh 2 .

[ --_tQ2 - P2) - 2Ah cothAh P2 ]

CSE : e-2AhCs W

CSC : 4Ah coshAh cothAh P2

Details of the derivation are given in Sec. A-2 of Appendix

A. Equation (III-15) can also be expressed in terms of the

Courant number CO and the other parameter Ah as follows

CWC = eAhs1

CEC = e-Ahsl

CSW = eAhs 2 (III-16)

CSE = e-Ahs2

CSC : _Ah coshAh cothAh P2

where



and

2Ah(
S1 = -_0 P2

2Ah (
$2 = _0 Q2
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- Q2 ) + Q1

- P2 ) - 2Ah cothAh P2

3O

III-I-3 Hybrid FA Formulation of Unsteady One-Dimensional

Convective Transport Equation

In order to reduce the manipulation effort and compu-

tational time, an alternative hybrid FA solution of

one-dimensional convective transport equation (III-8) may

be derived where an approximation for unsteady term may

be used. For example, one may approximate the unsteady

term by a simple finite difference formula.

Cp - ¢sc
Bet = B =constant = g (III-17)

so that the unsteady convective transport equation (III-8)

is reduced to be a steady-like convective transport

equation with the unsteady term absorbed in a constant

source term g for the local element as follows

Cxx = 2ACx + g (III-18)

The f[r_ite anaLvtic alKebra[c equation can be derive(!

Pasilv as th_l_ nhown in _ec. A-3 of App_,ndix A.

eAhCWC + p-AhCEc tanhAh

CP = eAh + _-Ah " _ gh2 (III-19)
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By substituting the expression of g into eq(III-19), a

4-point hybrid FA formula (see Fig. l(c)) is obtained

31

#p = CWC_WC + CEC¢EC + CSC_SC

1
- (bwc_wc + + )i + bsc bEC_EC bSC_SC

whet, f,
2

Bh tanhAh 1
bSC = 2--{-- Ah = _-- tanhAh

0

bWC =

Ah
e

Ah -Ah
e + e

bEC =

-Ah
e

Ah e -Ahe +

(III-20)

(Ill-20d)

It is noted that eq(III-17) is the only approximation

made in the derivation of the hybrid FA formula (III-20),

thus, the three-point steady state finite analytic solution

can be obtained from eq(III-19) or (III-20) by simply

letting g = 0 or B = 0. Which is

eAh -Ah
" _WC ÷ e _EC

_P : Ah -Ah (III-21)
e + e

By equating _n : _n-I in equation (III-15), i.e., _p = _SC'

_SW = _WC' _SE = #EC' the same steady-state solution

(III-21) is recovered in the formul_ition using e×ponential

and linear initial function and linear, boundary functions.
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III-2 Finite Analytic Solutions for Unsteady Two-Dimensional

o_e_ive _rahspor't Equations .....

For unsteady fluid flow and heat transfer problems

which depend on only two space variables, the dimensionless

equation of continuity (III-l), momentum equation (III-2)

thru (III-4) and energy equation (III-5) are simplified

respectively to be

u + v = 0 (III-22)
x y

+ vu = -P× + R_ (u + u ) (III-23)ut + UUx y xx yy

+ vv = -Py + R_ (v + v ) (III-24)vt + uv× Y xx yy

+ vT = q + _e (T + T ) (III-25)Tt + UTx y xx yy

If vorticity-streamfunction formulation is considered

by eliminating the pressure term from eq(III-23) and

(III-24), a vorticity transport equation can be obtained

= 1 ($xx + ) (III-26)_t + U$x + V_y R-7 £yy

where vorticity _ is defined by

- u - -(_xx + _yy) (III-27)_ = v× Y

with u : _y and v : -_x (III-28)

where the streamfunction _ is defined by eq(III-28), so
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that the equation of continuity (III-22) is automatically

satisfied.

Eithez' in vorticlty-streamtunct_on (_,£,T) or in

primitive variables (u,v,p,T) Formulation, a convective

transpot,t equation ot th_ form of

Cxx + Cyy : R (¢t ÷ U¢x ÷ VCy) + F (III-29)

is often encountered in solving two-dimensional fluid flow

or heat trdnsfe_ _ problems. Where ¢ may represent

velocities (R:Re), vorticity (R:Re), temperatuI'e (R:Pe)

o,, st_'eamfunction (R:0). The convective velocities u, v

and the source term F, in genel-a_, aI'e [unctions of

independent variables x, y, t and dependent variables

Cj (e.g., u, v, p, T, ¢ or _)including ¢ itself. Equation

(III-29) may also be written in conse,'vative form by

applying the equation of continuity (ITI-22)

: + (re) v] + F (III-30)Cxx + Cyy R let + (U¢)x

In most of the engineering applications, the analytic

solution ot_ eq(III-29) or (I11-30) may not be available

due to the complex geometry and bounda_'y conditions,

nontinear_ty of the equation _nd also the coupling o[ the

v,lriables. Thus, the finite analytic numerical method is

used to formulate the discretization equation fop ¢, so

that ar_ 4pproxima_e numerical solution can be obtained.
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III-?-i Method of Linearization

To implement the FA method, the flow region as shown

in Fig. 3 is subdivided into a number of small elements by

passing orthogonal lines through the region. A typical

local element with the _nterior nodal point P(i,j,n) may

be surrounded by the neighboring points EC (East center),

WC (West Center), NC (North Center), SC (South Center),

NE (Northeast), NW (No_'thwest), SF, (Southeast), SW

(Southwest) and those of previous time step, which corres-

ponding to (i+l,j,n), (i-l,j,n), (i,j+l,n), (J,j-l,n),

(i+l,_+],n), (_-],i+l,T1), (i+l,_-l,n), (i-l,j-l,n) and

those at previous time step tn_ 1 respectively.

Even in the local element of such a simple geometry,

the analytic solution for eq(III-8) or (III-9) may still

be difficult to obtain due to the coupling of variables,

nonlinearity of equation and the complicated source

function. In this situation, a linearization scheme

outlined in the following is employed to obtain the nomi-

nally l_ne,**' cor_vect ivy, transport equation, so that the

,ir,alyli_" sol_ ion ,'aTl be derived in each local element.

Considering;. t}_, _,,uvective tt'anspcrt equation of

conservation form (171-30) as an example, Jn order to solve

eq(III-30) analytically in each local element, eq([I_-30)

is first rearranged to be
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with

¢y 7 _ V,_ ) t I" t R I(_l'#)Cxx ÷ : R (¢t ÷ t'Qx y x

+ (v'@) ] (Tll-._l)
Y

tl(x,y,t,¢]) : [i _ u'(x,y,t,¢j) (III-31,1)

v(x,v,t,¢j) : V ÷ v'(x,y,t,¢ i) (III-31b)

whe,'e U and V ai'e i,ept'esentat ire constant values .in the

loo,il element, for example, the v,'locilies at th_ intt,,'i,_i,

point P of the ,ll,e,i-,iv,,,,aKt, d velo_.it ie.-; ov_'i' the loc',il

element. And @_ ii*,iybe any d_:pendent vaz'i,ll*lt: inoludill),,

itseli.

When the ].o_'al element is small enoutlh, the deviations

u' and v' teom U and V should be smal! also. Thei'efore,

+ (v'¢) ] may b_, L'onsidePed as a hi_hel,the tez,m R[(u'¢) x Y

o_'deI' _'oi're_:tion to the oonvectiv,_, t,.,rnl in whic'h the

conveotion of @ v,lri,,ble in the ,,lement is oaz'i'ied by

constant velo('itleq tl and V. l_enotin_l two time stel_s t rl- l

and tn, one re,IV locally l[ue.lt'i:.e tht' (-ouvec'tive t.,-,in::l_ol,t

equat ioi_ (lll-3l) by ,ippi'oximat in K the t:ouz'o,, tunct [ol_ ,llld

hi),.hei' oi'der ,-orre,.tion term a.,: a functiol_ known from

pi'evious t[ml, step in_ l (of from th,. pr,,vious iter,i_ i m

in itel,ative steady-state method), i.t..,

÷ ) n
($xx @Vy : R (¢t * i'Ox _ V4_V)n. i fn-l(x,y,¢.i)

where ( II I-,l.')
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f(x,y,t,¢_) = F(x,y,t,¢_) + R [(u'¢) x ÷ (v'_)y]

In this fashion, eq(III-30) is locally linearized to

be a nominally linear partial differential equation of

th
constant coefficients at n time step. Various solution

methods as those described in Section III-I for unsteady

one-dimensional problems can thus be employed to derive

the analytic solution fop the l_nearized elliptic-parabolic

partidl differentia] equation (I_I-37). (elliptic in space

and parabolic in time in space-time variables)

In previous formulations for' one-dimensional problems,

it is learned that different approximations to the unsteady

term may result in different intermediate peofile and

speed of propagatJon_ however, there is no direct effect

on the steady-staLe solution profile. FuPthermore, because

of the parabolic nature in time domain and that the time

derivative appears only in one term of eq(III-32), it

is possible to adopt a simple apppoximdtlon for unsteady

term with a reasonable transient solution profile. Thus,

the simple hybrid FA formula outlined in Sec. IIl-l-3 is

used in thil; st_,<ly to reduce the complexity of the

derivation and to save the computational time. In the

hybrid FA formulation, the unsteady term is then approxi-

mated by

n n-i

Cp- _p
RO t : R l : constant (III-]3)
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- t i_ the time increment, and the subscriptwhere I : tn u-I

P den,,l_,s the it_i,,_'i,_p node [' oi ll_t, I,),.,_I (:]emetlt.

addition, the nonhomogeneous part [n'l(x,y,$j)In of.

eq(III-32) can also be approximated by a representative

constant value fp in the local element, so that the

manipulation effort and computational time required can

be further reduced. Under these approximations, the

unstt,ady two-dimensional convective tt'ansport equa%ion

(II[-30) is ,_;imp.l[fied to be ,, nomin.llly ][n,'a_' e[l.iI_tic-

like PD}_ with constant _nhomogeneour; term

Cx× + Cyy = 2ACx + 2Bey + g

I i

where A= _ RU, B = _- RV

(171-34)

(III-3qa)

and g = R (¢_ I_-i- @p ) _ fp = constant (III-3qb)

_ln d

rt should be remarked here that the constants A, B

g may differ from one element to another, so that the

overall uonlinear_ty is approximately pre'._e_'ved. And _|_e

coupling nature of v,_r_ables can al._o l_, .Lpp_,oximately

preserved by solving thv in_erli1_ked equat ions subse-

quently in each time step.

Since the initial cond{tion has been taken care of

by approximating the unsteady term by a finite difference,

the equivalent elliptic _DE (III-3_) _:an then be solved

analytically [[ the boundary (:onditions are properly
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specified. A typical local element for eq(III-34) at time

step t n (or at t = T in FiR. 3) is enclosed by four

boundaries (East, West, North and south), where each

boundary for the numerical purpose has three nodes. Thus,

the boundary conditions for linearized convective transport

equation (III-34) may be approximately specified by these

eight nodal v_lues in the boundaries. In this study, three

local analytic solutions for different local element and

boundary approximations will be derived in the following

(i) Uniform grid spacing local element (hE=hw=h, hN=h S

=k) with exponential and linear boundary approxi-

mations. (Fig. h(a))

(2) Nonuniform grid spacing local element (h E _ hw,

h N # h S) w_th exponential and linear boundary

approximations. (Fig. 4(b))

(3) Uniform grid spacing local element with

pieeewise-linear boundary approximations. (Fig. %(a))

III-2-2 FA Formulation of Unsteady Two-Dimensional

Convective Transport Equation for I]niform Grid

Spacing Local Element with Exponential and

Linear Boundary Approximations.

Chen et. al. [5,6] developed a FA solution to solve

the steady vo_,ticity transport equation

"×x + 6yv = 2ASx ÷ 2B_y (III-35)
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in a uniform grid local element as shown in Fig. 4(a). In

their formulation, eq(III-35), which is a special case of

eq(III-34) with g = 0, is solved by using the second-order

polynomial boundary approximations on ,:ach boundary. I'o_'

example_ the east boundary condit ion 61:(x) is approximated

by

_E(X) = a 0 + alY + a2Y

1 _ _ )
where a0 = _EC' al : 2--[ (['NE SE

and 1 + _ 2 _,EC)
a2 : k-2 (<N£ <SE

The linear homogeneous vorticity transport equation

(III-35) is then solved analytically by the method of

separation of variables. The finite analytic so]ution

when evaluated at the center node P gives

<p = CEC<EC + CWC£WC + CNC<NC + CSC$SC + CNE_NE

÷ CNW_NW + CSE_SE + CSWESW
(III-36)

The expressions of FA coefficients CEC, CWC etc.

can be found in Chen et. al. [5,6]. It exhibits a gradual

upwind shift, which is considerably better than those

given by FD or FE methods [Ii- 15]. However, the calcu-

lation of FA coefficients are rather time consuming, and

some of the FA coefficients ,_Ithough small will become
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negative when convective velocities are large. These

negative FA coefficients are physically unrealistic [ii],

since the contribution from diffusion should be positive

for all physical problems.

After further investigation, it now becomes clear

that these negative FA coefficients originate from the

boundary approximations. For example, let us consider

the limiting case of negligible diffusion (i.e., Re _)

where eq (III-35) _s reduced to

2A_x + 2B_y : 0 (III-37)

The exact solution for this first-order hyperbolic

equation is known to be

: f(x -ABe) (III-38)

If second-order boundary approximation is used to

approximate the south boundary condition (i.e., now the

initial condition for eq(III-37)) for the case 0 _ Ak & Bh,

the analytic solution evaluated at center node P will give

r r
_P : _ ( r÷I)_sw + (I-r2)_SC + 7 ( r-1)_SE

: CSWESW + CSCESC + CSE_SE

where

Ak
r : _ , O<_r<_l

(III-39)
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From eq(III-39) it is seen that the coefficient CSE

is always negative, and the maximum negative value, which

occurs at r = 0.5, will be -0.125.

In order to construct a better boundary approximation

for convective transport equatioh (iII-34) oz' (II]-35),

the steady one-dimensional convective tral,sport equation

is investigated at first

Cxx = 2ACx + g (III-40)

Equation (III-40) is exactly the same as equation

(III-18) considered previously, the exact solution is

given in Sec. A-3, and the derivative at point P can also

be derived.

A

For the case g = 0, the solution (A-42) of eq(III-40)

as a function of convective velocity U or parameter Ah,

which has been discussed by Spadling [9], Patankar [II]

and others_ is plotted in Fig. 5.

It can be seen that when Ah changes from pure

diffusion ease (Ah = O) to convective dominant cases

( IAhl >> 1 ), the exact solution at center point P (i.e.,

eq(III-21)) exhibits a gradual shift to upwind and the

derivative at point P gradually decreases to zero. If

secon_-ot-de_" polynomial boundary appt'(_ximation is used
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to approximate the exact solution, negative or dvershoot

may occur at large Ah or convective velocity as that shown

in Fig. 5. Furthermore, the derivative at point P is much

larger than the true value. Thus, use of second-order

polynomial as boundary functions may overestimate the

diffusion effect at large convective velocities. On the

other hand, use of the piecewise-linear boundary approxi-

mation shown in Fig. 5 will give a much better representa-

tion of upstream solution, howevee, the diffusion effect

may be overestimated.

Extending the idea of using the exact solution for

one-dimensional convective transport equation, one can

construct a better approximation function of boundary

conditions by utilizing the natural solution for

two-dimensional convective transport equation (III-34).

A natural solution for eq(III-3q) may be written in x and

y variables as

¢ : Coe2(Ax+By ) + Cl(Ay-Bx) + C2 - A22( *B 2 )
(Ax+By)

(III-q2)

The last term in eq(III-42) is the particulam solution of

eq(III-3g). The first three terms are solutions that

satisfies the homogeneous part of eq(III-34). Writing

¢ : ¢- g (Ax+By)
2(ALB  

(III-W3)
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and substituting ¢ in eq(lll-43) into eq(lll-34), then $

satisfies the homogeneous equation

+ - = 2ASx + 2BSy (III-44)Sxx @yy

The natural solution (III-42) suggests that an

exponential and linear function in terms of the three

nodal values on each boundary may be employed to obtain

the approximated boundary conditions for the local

element considered. For example, the north boundary

condition where y is fixed can be approximated by

2Ax
SN(X) : aN(e -I) + bNX + c

where

aN - 4sin-_h Ah

(iii-45a)

bN _ i [ _ $ _ cothAh(5 + $ _ 25 )]2h SNE NW NE NW NC

CN : _NC

The boundary conditions for south, east and west

sides, i.e., $s(X), SE(y) and 5w(y) can be similarly

approximated by exponential and linear boundary functions

as follows

¢S(X) = as(e2AX_l) + bsX ÷ cS

CE(y) = aE(e2BY_I) + bEY + cE

(III-45b)

(III-45c)
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2By 1
_(y) : aw(e - ) + bwY + cw (III-45d)

where the coefficients as, b S etc. are expressed in terms

of the nodal values on each boundary in a way similar to

that for aN, bN and cN. The nominally linear convective

transport equation (III-44) with boundary conditions

bE(y), Cw(y), _N(X) and _S(x) is then solved analytically

by the method of separation of variables. The local

analytic solution when evaluated at the interior point P

of the rectangular local element gives a finite analytic

algebraic equation relating the interior nodal value ¢p

and its 8 neighboring nodal values as

%p = CEc%Ec÷ Cwc%wc+ CNC%_C-,CSC%SC+ CNE:%NE+

CNW_NW + CSE_SE + Csw%sw

Here, the FA coefficients are

(III-46)

CEC = e-Ah(EB)

CNC = e-Bk(EA)

-Ah-Bk E
CNE = e

CSE

where

E _

-Ah+Bk
: e E

4coshAh coshBk

CWC : eAh(EB)

CSC : eBk(EA)

CNW "-

CSW =

eAh-Bk E

Ah+Bk
e E

(III-47)

!

- Ah cothAh E 2 - Bk cothBk E 2

(lll-_8a)
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and

EA : 2Ah coshAh cothAh E 2

EB : 2Bk coshBk cothBk E_

E2 =

(III-q8b)

(III-48c)

= -(-l)m(l h)

m (III-48d)

m:l [(Ah)2+(X h)212 cosh /A2+B2+X2 k
m m

-(-l)m(k_k)
(III-48e)

m=l [(Bk)2+(X,k)2]2 cosh /A2+B2+X '2 h
m m

with

h 2

: k--_" E2 +

Ak tanhBk -Bh tanhAh

qABk 2 coshAh coshBk

k h : (m -I
m 2-) _

1
Xmk :

(III-48f)

Details of the solution procedures are given in Sec.

B-I of Appendix B. It should be noted that in the finite

analytic solution (III-46), there is only one series

summation term needed to be calculated numericaliy. That

is E2, and it may be replaced by suitable approximation

functions to further reduce the computational time.

Fo_ the unsteady inhomogeneous convective transport

equation (III-3q) with higher order correction term, i.e.,

g _ 0, the local analytic solution can be obtained by

substituting $ of eq(III-43) at 9 nodal points into

eq(III-_6) for ¢, which gives
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_p = CNE_NE + CNW#Iq W + CSE_SE + CSW#SW + CEC#EC +

CWC#W C + CHC#N c + CSC#SC - Cpg

where

1
Cp -

2(A2+B 2 )

(111-49)

{ Ah tanhAh + Bk tanhBk - 4 coshAh *

coshBk [ (Ah)2E2 + (Bk)2E_ ] } (IIl-S0)

By substituting g of eq(lll-3_b) into eq(lll-_9), a

10-point FA formula for unsteady two-dimensional convective

tPansport equation can be obtained

_p - i .....(CNE@N E + CNW_NW + CSE_SE + CSW#SW
1 + _ CpT

R n-l
+ CECOE C + CWC@WC + CNC_NC + CSC4_SC + _-Cp Op

where

- Cpfp) (111-51)

fp : fn-l(x,y,_)Ip

: { F(x,y,t,_j) + R [ (u'¢) x

(Ill-51a)

+ (v'$)y] } IP(0,O,O)

and the nodal values without superscript denote those

n-I
values evaluated at nth time step,while _p denotes the

known nodal value of intePior point at (n-l) th time step.

It is noted that the FA coefficients CNE, CNW etc.

and the parameter CD/h 2 are functions of Ah, Bk and the

ratio h/k only. For local element of unifoPm gPid sizes
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(h E : h w : h N : h S : h), they will depend on Ah and Bh only.

And the parameteP Rh2/r, in this case, is often used to

determine the optimal time step 3.

In the limiting case Rh2/'r , 0, the steady state

solut:ion (I[I-L_£) is t'ecoveeed. Th_ same steady state

n n-I
sol_,t_on _:arl also be obtained by equating _p : _p in

eq([II-Sl).

The dePivatives of _, i.e., _x and _y, may be obtained

analytically by diffePentiat[ng the local analytic solution

directly [5,6], or by a _imp]e formula described below.

Assume an analytic funct ion along the x-axis

2Ax_ ]
¢(x,0) : a0(e ) + boX + c 0

which passing through 3 nodal points WC, P and EC in the

local element (see Fig. _), so that

_EC + _WC - 2#P

a 0 - 4 sinh_A h

1 - 2 ]
b0 :_-h [_I:C - _WC - c°th6h(¢EC + SWC _P)

c 0 : _p

then the derivative at any po:int a]on}, the x-axis can be

easily obtained

9 Ax

Cx(X,0) : ?Aa 6, _ b 0
(III-52)
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Evaluating eq(lll-52) at x = 0, then the derivative of

¢ with respect to x at nodal point P will be

i _ tEC - tWC + Ah - s_inhA___hhc oshAh ( tEC +¢WC - 2¢p)tx p 2h 2h sinh2Ah

(fll-52a)

Derivative of ¢ with respect to y at point P can also

be derived in a similar way. It can be seen that eq(III-

52a) provides a gradual shift from central difference at

the pure diffusion case (Ah = 0) to upward difference at

convection dominant cases (IAhl >> i). Furthermore, the

derivatives at points WC, EC etc. can also be obtained

from eq(III-52) whenever needed.

III-2-3 Finite Analytic Formulation of Unsteady 2D

Convective Transport Equation for Nonuniform Grid

Spacing Local Element with Exponontial and Linear

Boundary Approximation

In previous formulation, the local analytic solution

for the nominally linear two-dimensional convective

transport equation (III-3_) is derived in terms of the 8

boundary nodes which are equally spaced on the boundary

of the rectangular local element with grid spacing h and

k respectively. A finite analytic discretization equation

is then obtained by evaluating the local analytic solution

at the center of the local element. The resulting FA

formulas (III-_9) -(III-51) are applicable to fluid flow
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or heat transfer problems with uniform rectangular or

square elements over the whole domain of calculation.

Although a freedom of employing different uniform grid

spacing in x and y direction is offered, it may still be

impractical for problems where extremely fine _rids are

needed in a small portion of domain of calculation only.

For this kind of problems, the use of nonuniform grid

spacing in a local element as that shown in Fig. 3 or

Fig. 4(b) is often desirable, since it enables us to

obtain physically meaningful solutions more effectively.

By using the same exponential and linear boundary

function (III-45a) -(III-45d), but expressed in terms of

the unequally spaced nodal values, a finite analytic

solution for nonuniform grid spacing local element may

also be obtained by the method of separation of variables

as that outlined in See. B-2 of Appendix B. However, the

derivations are much more complicated than those for

uniform rectangular local elements, and the compu%itional

time required for numerical calculations of FA coefficients

will increase significantly. This additional complexity

may totally offset the advantages gained by using the

nonuniform grid local element. Thus, in present study,

instead of using this general formulation, a simple

interpolation formula utilizing the local analytic

solution (III-50) or (Ill-51) for uniform rectangular
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element is employed to derive the finite analytic algebraic

equation for local element of nonuniform grid spacing.

Consider the case h E < h W and h N < h S shown in Fig. 4(b)

as an example. A smaller rectangular element of width 2h E,

height 2h N and with the interior point P located at the

center is drawn as shown. The FA formula (III-q9) derived

previously for _p can then be written in terms of nodal

values _NW _ CWC etc. on smaller recta_,sular element as

follows

Cp = CNECNE + CNWCNW + CSE¢SE + CSW¢SW + CEC_EC +

CWCCWC + CNCCNC + CSC¢SC - Cpg
(111-53)

where the FA coefficients CNE , CNW etc. are defined

previously in eq(III-,9) with grid sizes h = h E and k = h N.

If suitable interpolation functions are employed to

approximate the unknown nodal values _NW' ¢SE etc. in

terms of the known values CNW' ¢SE etc. at 9 nodes which

are unequally spaced on the larger element, a FA formula

for nonuniform grid spacing local element can then be

obtained by substituting the interpolated nodal values

CNW' @SE etc. into eq(III-53).

Although there are several interpolation functions

may be used to approximate the nodal values #NW' CWC etc.

the same exponential and linear boundary function (III-_Sa)

- (III-_Sd) is employed as the interpolation function to
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obtain the unknown nodal values on smaller rectangular

element, so that the error introduced by interpolation

will be minimized. For example, the north boundary

condition can be approximated by the boundary function

CN(X) : aN(e2AX.l) + bNX + cN (III-5_)

where

aN 2Ahv I
hw(e _- ) + hE(e

hW¢NE + hE¢NW- (hE+hw)¢NC

= _2Ahw
-I)

bN :

-2Ahw I 2AhE 1
(e - )(¢NE-¢NC ) - (e - )(¢N.W-ONC )

2AhE -2Ahw 1
hw(e -i) + hE(e - )

CN : CNC

in terms of the unequally spaced nodal values CNE' CNC and

CNW on north boundary.

The interpolated nodal value ¢NW can then be obtained

by simply evaluating the boundary function (III-5_) at

x :-h E , which gives

¢NW : (s-l)oN E + sONW + (2-s-s)¢NC (111-55)

where

S

2Ah E -2Ah E
hw(e + e - 2)

2Ah E -2Ahw_ I
hw(e -I) + hE(e )

h E

s = S_W



ORIGINAl- P_-.'_L_:_"

OF POOR QUALL_'{Y
52

Similar exponential and linear boundary functions can

also be employed to obtain other nodal values _WC' _SC'

#SE and #SW as those shown in (B-33b) -(B-33e) of Appendix

B. By substituting intempolated nodal values _NW' #WC etc.

into eq(lll-53), a 9-point FA formula for local element

of nonuniform grid spacing is obtained.

1
_p = _ (bNE_NE + bNW#NW + bSE#SE + bSW_SW + bEC_EC +

where

and

bWC_W C + bNC_N c + bSC¢S C - bpg)
(111-55)

G = 1 - (2-s-_)Cwc - (2-t-t)Csc - (2-s-_)(2-t-t)Csw

bNE = CNE + (s-I)CNw + (t-I)CsE + (s-l)(t-l)Csw

bNW = _CNW + _(t-I)Csw

bSE = _CsE + _(s-I)Csw

bsw = _Csw

bEC : CEC + (s-I)Cwc + (2-t-_)CsE + (s-I)(2-t-_)Csw

bwc : _Cwc + _(2-t-_)Csw

bNc : CNC + (L-1)Csc + (2-s-s)CNw + (t-1)(2-s-s)Csw

bsc = {Csc + {(2-s-_)Csw

bp = Cp
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2 Bh N - 2 Bh N

hs(e + e - 2)

t : , ,- 2Bh s
hs(e -i) + hN(e -I)

h N

_=t_S

53

For the unsteady two-dimensional convective transport

equation with nonzero source function, a 10-point FA

formula similar to eq(III-51) can also be obtained for

the nonuniform grid spacing local element considered.

1

CP - R (bNECNE + bNWONW + bSE¢SE + bSW¢SW +

G +-bpT

R n-I

bECCEC + bWCCWC + bNCCNC + bSCOSC ÷ -_bp Cp

- bpfp) (III-57)

Where the nodal values without superscript denote those

th n-I

values evaluated at n time step, while Cp denotes the

nodal value of interior point P at (n-l) th time step.

For the cases h E > h w and/or h N > hs, the finite

analytic algebraic equation (III-57) can still be applied

by simply reversing the flow direction and renaming the

nodal points. It can be carried out easily through the

change of signs and ind_ces in numerical calculation.

Details are ziven in the subroutine COEFF2 of Appendix D.
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III-2-4 Finite Analytic Formulation of Unsteady

2D Convective Transport Equa%ion for

Uniform Grid Spacing Local Element with

Piecewise-linear Boundary Approximation

Another possible boundary approximation which may give

all-positive FA coefficients is the piecewise-linear

boundary function mentioned in Section III-2-2. Thus,

instead of using The exponential and linear boundary func-

tion (III-45a), one may approximate the boundary condition

on the north boundary by a piecewise-linear profile as

%N(X) = (III-SS)
X

%NC- (_NW-tNC ) h '

0<x<h

-h<x<0

and _s(X), _E(y) and _W(y) can be similarly formulated.

The linearized homogeneous convective transport

equation (III-_) with piecewise-linear boundary conditions

_N(X), _s(X), tE(y) and %w(y) is then solved by the method

of sepamation of variables. A finite analytic algebraic

equation can then be obtained by evaluating the local

analytic solution at the interior point P of the local

element, i.e.,

tp = CNEtNE * CNW_NW * CSE¢SE * CSW¢SW + CECCEC +

CWCtWC + C_C_NC + CSC_SC (III-59)

where
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I (e-BkF
c_:- _ 2

I (e-BkF
: - 2CNW 2

-Ah-Bk [E
-Ah F*e ½) +e

Ah-Bk [ E
+ eAhF_) + e

-Ah+Bk[E_

(eBkF2 -Ah F, + e1 + e 2 .)
Csg :

Ah+Bk [ E

1 eBkF2 AhF½) + e: _ ( + e
CSW 2

-Ah(2Bk sinhBk E_ - F_)
CEC

' - F')
Ah ( 2Bk sinhBk E 2 2

CW C = e

= -Bk(
CM C e 2Kh sinhAh E 2 -F 2)

Bk ( 2Kh sinhAh E 2 - F2)
CS C = e

+ (Ah)E2 + (Bk)E½]

_ (Ah)E2 + (Sk)E½]

+ (Ah)E2 - (Bk)E½]

_ (Ah)E2 - (Bk)E½]

i

* 1 ') : %-_$shAh coshBk
E = _ (E 1 + E1

_ h) 2
® (Ah) 2 ( Im

: r. - 2 xmh)2] 2£2 m:l [(kh) +( c°sh Pink

with ),mh : (m-l)_ ' Pm :

(Bk)2- (lmk) 2

' : Z _T cosh_hF2 m:l

, : /_+B2+X_

with Xmk (m - I: _)'_ ' _m

, ' are the same series summations as

And E I ,El, E 2 and E?

those given in eq(III-_8) and Sec. B-I.
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When unsteady two-dimensional canvective transport

equation is considered, a 10-point FA formula exactly the

same as eq(III-51) and (III-51a) will be obtained except

that the FA coefficients in eq(III-47) are replaced by

those defined in eq(III-59).

56

III-3 Finite Analytic Solutions for Unsteady

Three-Dimensional Convectiv e Transport
Equatfons

The unsteady three-dimensional incompressible flow

problem in Cartesian coordinate is governed by the equation

of continuity (III-l) and Navier-Stokes equations (III-2) -

(III-4) given previously. One may take the curl of the

Navier-Stokes equations to eliminate the pressure ter_n_ so

that three vorticity transport equations are obtained.

_;t + U_x 4 V_y + wC

qt + Unx + V_y + wq

_t +u_x ÷ VGy +wG

: R_C_xx + _yy + _zz ) + _u x + nUy + _u z

(III-60)

+ + ) + + qVy +rlyy fizz _v x _v z

(III-61)

+ + )+ + +
_yy _zz _w x qWy _w z

(III-62)

where 6, q and & are the vorticity components given by

= Wy v z , q = u z wx , _ = v x-uy (III-63)
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By the use of equation of continuity (III-l),

eq(III-63) may also be wmitten as

+ u + u = n z Cy (III-6_)Uxx yy zz "

v + v + v = _ - _ (III-65)
xx yy zz x z

Wxx + Wyy + Wzz = _y - nx (III-66)

for velocity components u, v and w.

Instead of solving u, v and w in eq(III-64) -(III-66),

another commonly used vorticity-based formulation did

introduce a scalar potential ¢_ and a vector potential

: _x I + _, ] + _z _' such that

= u I + v ] + w = V¢ + V×¢ (III-67a)

V.$ = 0 (IIl-67b)

then eq(lll-64)- (111-66) may be replaced by

V2¢ = 0 (III-68)

V2¢x = - _ (III-69)

V2@y : - q (III-70)

V2_ : - _ (III-71)
Z

Either in primitive variable (u,v,w,p) or in

vorticity-based (_,q,_,u,v,w or _,q,_,_,@x,@y,@z )
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fommulations, a convective transport equation of the form

of

Cxx + Cyy + Czz : R(¢t +uCx +vCy +WCz) + F (III-72)

is often encountered, where ¢ may repPesent any one of the

convective transport quantities, _j, such as velocities u,

v, w (R : Re)_ vorticities _, n, _ (R : Re), scalar potential

# (R = 0), components of vector potential _x' _y' _z (R : 0)

or temperature (R = Pc). The convective velocities u, v, w

and the source function F, in general, are functions of

independent variables x, y, z, t and dependent variables

#j including _ itself. By utilizing the equation of

continuity (III-l), eq(III-72) may also be written in

consemvative form as

: + (we) ] ÷ F_xx ÷ _yy ÷ Czz R [ _t ÷ (U_)x ÷ (V_)y z

(III-73)

Due _o the coupling of variables, nonlinearity of

governing equation and/or complex geometry and boundary

conditions, the analytic solution of eq(III-72) or (III-73)

may be vet N difficult, if not impossible, to obtain. Thus,

the FA numerical method is used to formulate the discreti-

zation equation for _, so that an approximate numerical

solution can be obtained.

!
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III-3-1 Method of Linearization

To implement the FA method_ the flow region as shown

in Fig. 1 is subdivided into a number of small elements

with variable grid spacing hE, hw, hN, hs, h T and h B in x,

y and z direction respectively, so that the difficulties

of complex geometry and boundary conditions can be

approximately resolved. For coupled nonlinear convective

transport equations, a linearization scheme similar to

that described in Section III-2-1 for two-dimensional

case may be employed to obtain a nominally linear

convective transport equation, so that the analytic

solution can be derived in each local element.

Consider the convective transport equation of

conservative form (III-73) as an example, even in a simple

rectangular local element shown in Fig. I, the analytic

solution of eq(III-73) may still be difficult to obtain

due to the complex nonlinearity of the equation and also

the coupling of variables. In this situation, a

linearization scheme outlined in See. III-2-1 (u = U + u',

v = V + v', w = W + w') is employed to approximate the

convective transport equation as

with

Cx× + Cyy + Czz : R ( Ct + U¢× ÷ VCy + WCz) + f(x,y,z,t,¢j)

(III-74)

_j ÷ (v'¢) + (w'_) z]f : F(x,y,z,t, ) ,R [ (u'%) x Y



mm

3

L

ORIGINAL P:_,_ I$

OF POOR QUi:',LITY 6O

where U, V and W are representative constant values in the

local element, for example, the velocities at the interior

point P or the area-averaged velocities over the local

element. And Cj may be any dependent variable including ¢

itself. The source function f in eq(III-74) which includes

the original source term F(x_y,z,t,¢j) of eq(III-73) and

the higher order correction term R [ (u'¢)x+(v'¢)y+(W'¢)z],

is approximated by a function known either from previous

time step in. 1 or from previous iteration in iterative

steady-state formulation.

The linear convective transport equation (III-7_) may

be solved analytically in each local element as long as

the initial and boundary conditions are properly specified.

However_ we would like to reduce the complexity encountered

in deriving the analytic solution for eq(III-7%). If a

simple finite difference formula (III-33) is employed to

approximate the unsteady term and the nonhomogeneous term

(III-7_a) is approximated by a representative constant

(=fn-l(x,y,z,¢j)I, _ for example) in the local element,fp
D

eq(III-73) is simplified to a linear elliptic PDE with

constant inhomogeneous term

!

Cxx + Cyy + Czz = 2k#x + 2Bey + 2C¢z + g

where

A : _RU , B = ½RV and C = ½RW

(III-75)
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%xx + Cyy + %zz = 2A_x + 2B%y + 2C_z (III-77)

in the local element.

With the boundary conditions properly specified, the

homogeneous convective transport equation (III-77) can be

solved analytically by the method of separation of

variables to provide the local analytic solution for each

small local element. In what follows, eq(III-77) is first

solved for a rectangular local element of hE = hw = h, hN-

hs = k and hT = hB = 1 as shown in Fig. 6(a), and is then

extended to that for the nonuniform grid spacing local

element shown in Fig. 6(b).

R (¢_- ¢_-1) + fp constant

And the constant A, B, C and g may differ from one element

to another, so that the overall nonlinearity is approxi-

mately preserved. Furthermore_ the coupling nature of

variables which appears in convection coefficients A, B, C

and source term g may also be preserved by solving the

interlinked equations subsequently in each time step.

For convenience, a change of variable can be made to

absorb the inhomogeneous term in eq(III-75)

= ¢ + • _ (Ax+By+Cz) (III-76)
2(A2+B2+C 2)

so that ¢ satisfies the homogeneous convective transport

equation



R

J

%_

ORIGI_/_L PAC_ !_

OF POOR QUALITY

62

III-3-2 Finite Analytic Formulation of Unsteady

Three-Dimensional Convective Transport

Equation for Uniform Grid Spacing Local
Element

In the FA formulation of one- and two-dimensional

problems, several boundary approximations ame investigated.

Among them, the exponential and linear boundary function

is shown to be relatively simple and does give the correct

asymptotic behavior for both diffusion and convection

dominated cases. Thus, in the FA formulation of unsteady

three-dimensional problems, a generalized exponential and

linear boundary function will be employed to approximate

all of the six boundary conditions in Terms of _6 boundary

nodes which are equally spaced on the local element shown

in Fig. 6(a). As an example, the boundary function on the

top surface can be written as

2Ax e2By (e 2AX l)y +_T(x,y) = aTl + aT2(e -i)( -i) + at3 -

aT4(e2BY-1)x + aTs(e2AX-1) + aT6(e2BY-1) +

at7× + aT8Y + aT9xY (111-78)

where the coefficients aTl, at2 etc. are related to the

nine boundary nodes on the Top boundary surface and are

given _n eq(C-9) of Appendix C.

The boundary conditions for bottom, east, west, north
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and south sides, i.e.,

and _s(X,Z) can be similarly approximated by exponential

and linear functions in terms of the nine nodal points

available on each boundary.

The linearized convective transport equation (III-77)

with boundary conditions _T(x,y), _B(x,y), _E(y,z),

_w(y,z), _N(X,Z) and _s(x,z) can be solved analytically by

the method of separation of variables. A finite analytic

algebraic equation is then obtained by evaluating the

local analytic solution at the interior point P, which will

give a 27-point FA formula

4

26

_p : E Cnb_n b (III-79)
1

where the subscript "nb" denotes the neighboring nodal

points to interior point P, and the FA coefficients Cnb

are given in the following

-Ah-Bk-CI Ah-Bk-CI
CNE T = e P , CNW T = e P $

-Ah+Bk'Cl Ah+Bk-Cl
CSE T = e P , CSW T = e P

-Ah-Bk+CI Ah-Bk+Cl
CNE B = e P , CNW B = e P

-Ah+Bk+Cl Ah+Bk+CI
CSE B = e P , CSW B = e P

-Bk-CI Bk-Cl
CNC T = e (QA) , CSC T = e (QA)
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CNC B = e-Bk+cl (QA) _ CSC B = e Bk+cl (QA)

CEC T = e-Ah-Cl (.QB) , CWC T = eAh'Cl (QB)

CEC B = e -Ah+CI (QB) , CWC B = eAh÷Cl (QB)

CNE C = e -Ah-Bk (QC) , CNW C = eAh-Bk (QC)

CSE C = e -Ah+Bk (QC) , Csw c = eAh+Bk (QC)

-Ah eAh (RA)
CEC = e (RA) , CWC =

CNC : e -Bk (RB) , CSC = e Bk (RB) ,

where

CTC : e -cl (RC) , CBC = ecl (RC)

1

8coshAh coshBk coshCl
p -

QA : 2coshAh (FA- GB -GC)

QB = 2coshBk (FB- GA-GC)

QC : 2coshCl (FC- GA-GB)

RA : 4coshBk coshCl (GA)

RB : 4coshAh coshCl (GB)

RC = 4coshAh coshBk (GC)

- FA- FB- FC + GA+ GB + GC

and FA t FB, FC, GA, GB and GC are defined by

FA : 2Ah cothAh (EA)

FB : 2Bk cothBk (EB)

FC : 2CI cothCl (EC)

64
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y ZEA : E 2 + E21

x + z h 2
EB : E21 El2 : (_) (EA) +

tanhBkBk (_ 12 tanhAhAh ]

x + Ey2 : (h 2EC : El2 i T ) (EA) +

tanhCl (h 2 tanhAh ]
CI T ) Ah

i

i6coshAh coshBk coshCl

i

16coshAh coshBk coshCl

6S

and

x

GA : 4BkCI cothBk cothCl E22

GB = 4AhCI cothAh cothCl Ey
22

GC = 4AhBk cothAh cothBk E z
22

where E_
lj'

form of

E_. and E_. are do_ble series summations of the
l] l]

= _ (-l)q+r(_qk)(6r I)
E_. = _ E

IJ q=l r:l 2[(Bk)2+(_qk)2]i[(Cl)2+(6rl)

_ (-I)P+r(A h)(6rl)

l)2]i[(Ah)_+(l h)
13 p:l r=l 2[(CI)2+(6r P

2]]coshyqrh

_ (-l)P+q(Aph) (_qk)

E E _ 2 i -k)2+(pqk)2]Jcosh_pqlp=l q=l 2[(Ah) +(_ h) ] [(B
P

i, j : i, 2.
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1 1 {kph : (p-7)_ , pqk : (q-_)w , 6rl : (r- )w

2+62
Ypr = /A2+B2 {C_+_p r

Yqr = /A2 +B2+C2+p2+62q r

Ypq = /A2+B2+C2+_2+p 2P q

66

Details of the derivations are given in Sec. C-1 of

Appendix C. Numerical results of £A coefficients for some

typical cases will be given in Chapter IV.

The local analytic Cp of unsteady nonhomogeneous

convective transport equation (III-75) can be obtained by

substituting eq(III-76) into eq(III-79) at 27 nodal points

26

CP : CP : IZ Cnb [Cnb + 2(A2+Bg 2'+'C2) (AXnb + BYnb + CZnb)]

(III-80)

where (Xnb , Ynb' Znb) is the position of each neighboring

nodal point at Cartesian coordinate, and g may including

the unsteady term, source function and the higher order

correction term used to compensate the assumption of

constant convective velocities for local element.

By substituting g of eq(III-75b) into eq(III-80), a

28-point FA formula of unsteady three-dimensional

convective transport equation can be obtained for the

local element of uniform grid spacing as follows
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_p -

where

Cp - -

26

R1 ( IZ CnbCnb + _RCp Cpn'l
1 + _ Cp

26 (AXnb + BYnb + CZnb) Cnb

 .B2.c-2i 2(A -2 + + )

-Cpfp) (III-81)

(III-82a)

2(A2+B2+C 2 )
{ Ah tanhAh + Bk tanhBk + C1 tanhCl -

2 2
16coshAh coshBk coshCl [ (Ah) (EA) + (Bk) (EB) +

(CI)2(EC)} (III-82b)

fp +(v'q_) +(w'¢) ]}I= {F(x,y,z,t,¢j) + R[(u'¢) x Y z

and the nodal values without superscript denote those

th
values evaluated at n time step, while ¢_-i and fp are

nodal value and source function (including the higher

order correction term) of interior point P evaluated at

(n-l) th time step.

2
In the limiting case Rh /T ÷ 0, the steady-state

solution, i.e., eq(III-80) with g=fp will be recovered

It can also be written as

26

Cp : Z CnbCn b - Cpfp (III-83)
i

The same steady-state solution can also be obtained

.r,-I n
by equating @p : ¢p in eq(lll-81).
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III-3-3 Finite Analytic Formulation of Unsteady

Three-Dimensional Convective Transport

Equation for Nonuniform Grid Spacing
Local Element

In many engineering applieations_ the use of nonuni-

form grid spacing local element is often desirable because

inevitablly fine grids or nonuniform grid spacing are

needed in some region of the domain of calculation to

capture the physical phenomenon or to save compulational

time. Thus, a local analytic solution for the local element

of nonuniform grid spacing hE, hw, hN, h S, hT and h B as

shown in Fig. 1 is derived in this section, so that one

may obtain physically meaningful solutions with minimum

computation.

Consider the case h E < hw, h N < h S and hT < h B shown in

Fig. 6(b) as an example. Following the idea described in

Section III-2-3, one may apply the FA formula (III-81) to

a smaller uniform grid spacing rectangular element of

width 2hE, depth 2h N and height 2h T as shown in Fig. 6(b)

as follows

* 1 26 * R n-i

Cp = Cp = _ ( Z CnbCnb + -C F - Cpfp)
I + - Cp 1 _ CP

(lII-8.)

where the unknown nodal values __nb on the boundaries of

the smaller rectangular element may be approximated by



(

Or,',,:" ",' _t I:AC_2 I9

OF PO0_ QUALI'I"Y

simple interpolation formula in terms of the known nodal

values Cnb on the larger nonuniform grid spacing local

element. In this formulation, the same exponential and

linear interpolation function given in previous section

III-2-3 will be employed to obtain the interpolated nodal

values Onb' so that the error introduced by interpolation

will be minimized. For example_ the unknown nodal value

CNWT may be approximated by exponential and linear

boundary function in terms of #NWT' _NCT and CNET on the

boundary of larger nonuniform grid local element.

where

CNWT : (s-I)¢NET + _¢NWT + (2-s-s)¢NCT (II7-85)

2Ah E -2Ah E

hw(e + e -2) h E
s - s = s (III-85a)

2AhE i -2Ahw I) _W
hw(e ) + hE(e -

Similar exponential and linear interpolation formulas

can also be employed to obtain other interpolated nodal

values as those shown in eq(C-3S) of Appendix C, while

Cnb= Cnb at nodal points NET, NEC, ECT, EC, NCT, NC and

TC are encountered. By substituting these interpolated

nodal values into eq(III-84), a 28-point FA formula for

unsteady three-dimensional convective transport equation

can be obtained in the local element of nonuniform grid

spacing hE, hw, hN, h_,,_ hT and h B as follows

6g
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26 R n-I . bpfp)
1 ( Z bnbCnb + --TbP Cp

= G i
¥bp

(111-86)

where

G : 1 - (2-s-_)Cwc - (2"t-E)Csc - (2"r-_)CBc " (2-s-

_)(7-t-_leSWC _ (2.s__)(2_r_F)CwcB _ (2_t-{)(2-r-

_)Csc B - (2.s-_)(2-t-{)(2-r'_)CswB

bNE T : CNE T + (s-I)CNw T +(t'I)CsET + (r-I)CNE B +

(s-I)(t-I)CswT + (t_I)(r_I)CsEB + (s-l)(r-l)*

CNW B + (s-I)(t-I)(r'Z)CswB

bEC T = CEC T + (s-l)Cwc T + (2-t-{)CsE T + (r-I)CEc B +

(s-I](r-I)CwcB + (2_t_{)(r_I)CsEB + (s-l)(2-t-

_)Csw T + (s-I)(2-t-{)(r-I)CswB

bNc T = CNC T + (2-s-S)CNw T + (t-I)Csc T + (r-I)CNc B +

(2-s-s)(t-i)CSWT + (2_s__)(r_I)CNwB + (i-l)(r

_I)Csc B + (2-s-s)(t-l)(r-l)CswB

÷ (2-r-_)CNE B +

bNE C = CNE C + (s-I)CNw C _ (t-I)CsE C

(s-I)(t'I)Cswc + (s_I)(2_r__)CNwB ÷ (t-l)(2-r

bEc

__)CsE B + (s-l)(t-l)(2-r-_)CswB

: CEC + (s-I)Cwc + (2-t-_)Cs£ C + (2-r-_)CEc B +

(s_I)(2_t-{)Csw C ÷ (s-I)(2-r-_)CwcB + (-2-t-{) _
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+ (s_l) (2-t-{) (2-r'_)CswB

(2-m'_) CSEB +

: + (t-I)Csc + (2-s-_)CNwc + (2-r-_)CNc B

bNC CNC + (2-$-_] (2-

(2_s__)(t_l)Czwc + (t-I)(2-r-_)CSCB

r._)CNw B + (2_s-s)(t -I)(2-_-5)C£WB

, (2-s-_)CwcT + (2-t-_)CscT +

bTC : C,?C _ (r-I)CBc

(2_s__)(r_I)CwcB + (2-t-{)(r-I)CscB

t_{]Csw T + (2_s-s)(2 -t-{)(_-I)CSWB

bNW T = _ [ CNW T + (t-I)Csw T

Csw_ ]

+ (r-I)CNw B +

+ (t-I)Csw c ÷ (2-r-_)CNwB +

bNW c : _ [ CNW c

cswB ]

bWC T = _ [ CWC T + (2-t-{)CswT + (r-I)Cwc B +

CswB ]

- + (2-t-_)Cswc + (2-r-_)C%4cB +
: s [ CWC

+ (2-s-E)( 2-

bwc

r-_)CswB ]

+ (r-I)CsE g

bsg T = { [ CSE T + (s-I)Csw T

CS_B ]

bSE C = { [ CSE C + (s-I)Csw C + (2-r-_)CzEB +

(t_l)(r-l) {_

(t_l)(2-r-_)

(2_t-_)(r-1)

(2_t-{)(2-

(s-l)(r-l)*

(s_l)C2-r-_)
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bSC T = _ [ CSC T + (2-s-s)Cst4T * (r-1)Csc B + (2-s-s)(r

-l)Csw B ]

bsc = { [ CSC + (2-s-_)Csw C + (2-r-_)Csc B + (2-s-s)(

2-r-_) CSW B]

bNE B = ? [ CNE B + (s-I)CNw B + (t-I)CsE B + (s-l)(t-l)e

Csw B ]

bEC B = 5 [ CEC B + (s-I)CwC B + (2-t-T)CSE B + (s-l)(2-t-

) Csw _ ]

bNC B = _ [ CNC B + (2-s-_)CNw B + (t-I)Csc B + (2-s-s)(t

-I)Csw B ]

bBC = _ [ CBC + (2-s-s)Cwc B + (2-t-_)Csc B

t-{)CSWS]

bSE B = _5 [ CSE B + (s-l)Csw B]

bSC B : _F [ CSC B + (2-s-_)Csw B]

bNw B = _ [ CNW B + (t-I)Csw B]

bwc B = _5 [ CWC B + (2-t-{)Csw B]

hew T = _F [ CSW T + (r-I)Csw B]

bsw C = _{ [ CSW C + (2-r-5)Csw B]
%

bsw B = _{_ Csw B

bp = Cp

+ (2-s-s) (2-
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where s and _ are defined in eq(III-85a), and t, _, r and

are similarly defined as

2Bh N -2Bh N

hg(e + e - 2)
t - { = t

2Bh N 2Bhs_I)
hs(e -i) + hN(e"

h N

2Ch T -2Ch T

hB(e + e -2) h T

2ChT 2Ch B , _ = r hB

hB(e -!) + hT(e -I)

The coefficients Cnb are given in eq(lll-79) with

h : hE, k = hN and I = h T. For the cases hF > hw, h N > h S etc.,

the FA solution (III-86) can still be used by opposite

the flow directions and rename the indices of neighboring

nodal points. Details are given in the subroutine COEFF3

of Appendix D.
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RESULTS AND DISCUSSION OF

FINITE ANALYTIC COEFFICIENTS
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In Chapter III, several kinds of discretization alge-

braic equations for multidimensional convective transport

equations were derived with different initial and boundary

approximation functions in each local element considered.

In general, these finite analytic solutions are functions

of convective velocities (or convection coefficients A =

RU/2, B = RV/2 etc.), grid sizes and time increment. In

order to illustrate the functional behavior of These

analytic solutions, examples of FA coe[ficients are given

in this chapter. A comparison with the 9-point FA formula

derived previously by Chert et. al. [5,6] is made for the

case of steady two-dimensional convective transport

equation.

IV-I Finite Analytic Coefficients for
Unsteady One-Dimens-{6nal Convective

Transport_Equation

In Section III-l, three sets of FA coefficients fo_

FA solution of eq(III-7) were derived as shown in (III-13),

(III-15) and (III-20) for two-time and one-time step local



F

elements respectively. For the two-time step local element

considered, second-order polynomials were employed to

approximate the initial and boundary conditions. The

resulting 8-point FA formula (III-13) then relates the

nodal value _NC to its 7 neighboring nodal values with two

parameters Ah and Bh2/2T (or Ah and Courant number C O =

2A_/Bh). The 7 FA coefficients are tabulated in Table (i)

and (2) for a range of Ah and Courant number, C O , of I.

Physically, the dependent variable _ may be considered as

a temperature variable carried by fluid moving at a

constant velocity U or a cell Reynolds number of 2Ah in an

element. A Courant number of 1 means that a fluid particle

will travel a distance of h from WC to NC in a time

interval T. However, the temperature of the particle may

not remain the same in this transport pz'ocess, since , in

additional to convection, the fluid particle also diffuses

its energy to the surrounding fluid particles. For

convection dominant cases (i.e., IAhl >> i), the diffusion

effect is so small that the temperature field is practi-

cally frozen with fluid flowing at the velocity of U in a

time interval of _. The influence of strong convective

motion on the dependent variable ¢ can be seen easily from

3

Table (I) that CWC ÷ 1 for Ah _ i0 That is the upstream

value of %WC w_thout diffusion is carried to the node NC

or CNC : CWC' On the other hand, if the diffusive transport
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process is much stronger than the convective heat transport

carried by fluid velocity (i.e., Ah_ 0), the influence

from upstream and downstream should be nearly the same,

since the diffusive transport is driven by the temperature

difference and not by the convective velocity U. Again,

this can be seen from Table (i) that CNW = CNE = 0.5 as

Ah + 0, or _NC = 0"5(_NE + #NW )"

In Table (2), the influence of convective velocity is

studied for the case of Bh2/2T = 1 by varying the Ah value.

Physically, this is the case with given time increment T

and grid spacing h, and the parameter Ah is proportional

to convective velocity U. Thus, a large value of Ah may be

interpreted as a large velocity. It can be seen from

Table (2) that the FA coefficients gradually shift upward

when the convective transport becomes dominant. However,

the negative FA coefficients although small are

encountered, these negative FA soefficients may translate

into locally unrealistic numerical result of overshoot

as shown in Sec. III-2. Instead of second-order polynomials,

an exponential and linear approximation for initial

function is employed to derive a 6-point FA formula

(III-15) or. (fII-16) in a one-time step local element.

This results in all-positive FA coefficients as shown in

Table (3) and (4) because the exponential and linear

approximation does not overshoot the three nodal values
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used for the initial condition. On the other hand, the

results in Table (3) still properly exhibit an upward

shift of the influence of FA coefficients on _p value.

In Table (g), the influence of Courant number C O is

investigated for a convective dominated case of Ah = 50.

The FA coefficients indicate that when diffusion effect

is small, the nodal value at point P is largely determined

by the information from upstream boundary. Since linear

boundary approximation is used along the west boundary,

the weight of CWC and CSW should be l_near also when

C O > I, because characteristic line issued from the node

P intercept the west boundary. On the other hand, if

0 _ C O S i, the characteristic line now intercept with the

initial line, and the nodal value _p is determined by the

exponential and linear initial approximation function

along the south side.

In order to reduce the effort of manipulation and

computational time, an alternative, hybrid FA solution

(III-20) fop eq(III-7) is derived in Section III-l-3,

in which the time derivative is appPoximated by finite

difference. The values of FA coefficients thus obtained

are tabulated in Table (5) for comparison. For, large or

small Courant number CO, theme is little difference

betweeh lh,, hybrid approach dnd _enet'd] |'A fot.mulation

(Ill-15) in the one-time step local element considered.
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Howew, r', the di,_'l'epancV I,t, tween ['A cuef'f'icients lop

eq{ I I |-l|a) ,_t_<| (If 1-20) b_'c'¢_m,'S ._i/=',t1_li{',mt wh_rt tho

c'otlt'ant number" i,,._of lhe oi,del, of I. Thi,,_ i,,_because when

th,, Coul.ant rltlmbel, it; ne,lt' o,_,,, the nod,:il v,ilue _tt point

I' i,,+mainly d,,tel,mincd bv +SW' vet the hybrid FA molut i,)n

,to,,,; not t,:lkc th,, no, h,II V_]ti@ _,'_W illtO ,l{'('otlrit, A:_ el

,"on,,;t, qucncc, ,I nunmt'ic,il ,liftxision +,+ thm_ intt, odut-,ed in

the hVbl'['.l tot'nlxl}.it iOl_ W|lt'l_ tilt' llOd,I1 V,tttle ¢,qN iS

appl',_xim, ltt, d 1W the neight,,_i, it_,_, i_,),t,iI v.tlue,i ¢Wt' and 4_8{,.

['l'Olll thi.q :;I LI,IV, Oil,' vII,IV _'t._ll,'lXld,' Ill,It, whtmtl t t_'

R,Ime+' l+Otlllddi'V ftlrlc't [or1,,_ ,it,It tl::t,,l, tilt, ['A |o1'ttltll,ltl.Orl tl:;itl),,

?}li" Pgpt'H1elll i,l] ,|lid I in,,,i,, initial t+tinction alwav:; t'.ivc:+

th,' l,hV:a{t?,lllv I',',11 l_t {,' l'+'sul t ,,; ,lnd t,,,quir<,,; l+,,,;:a

comput,lt ional time. On th,, othof hand, it the ,_amo initi,il

Itinction i.,: omploved, the- u:_e oI two-limt, ,.:t.,p ,'lt_nlenl

,tlld hil_h,'t' _+t'dt'l' b_)ttttd,tt'V |tlllCt {0118 t'l'dtl_'_','; thP tr,ll'._i,

numei, i,,,ll ditfu,._ion , but th,, ,,lfoi, I ,)I m,ll_ipul,_t ion ,triLl

,,omput.lt iOtl,'ll t illl,' itlt'l',',l.';t" :ligl_iI i+',|I11 Ix,,,

In .':e,,i ion Tit-2, Ill,, _.+-point }'A toi'mtlla del'ived bv

t'ht,,Ii +,t. at, r!,,,_l for :.I,,,ldv twt>-tlimr, n:;itm.i| homol._orleou,.;

VOl't icily tt',itl_|',tit'l t'qtl,_it ion w,Is i if:it imprc, vi, d bV using

expol_t, nt[,tl lind l iil,'_it' l,,_tind,li'y ,ll,pi,ox{m,ltion _n_tt,,td Of
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the second-order polynomial originally proposed, A lO-point

FA formula (III-57) for unsteady two-dimensional convective

transport equation in a nonuniform Kr_d spacing local

element is then derived while the best available boundary

approximation is employed. The FA coefficients thus derived

for nonuniform grid spacing element are, in general,

._ , hE and T. If a localfunctions of A, B_ R, hE' hw' N

element oi uniform grid spacing, h E : h W : h N = h S = h, is

considered, the }'A coefficients become functions of Ah,

2
Bh and Rh /_ only. In this section, the effect of three

different boundary approximations, namely, second-order

polynomial (FASP), exponential and linear (FAEL) and

piecewise-linear (FAPL) boundary approximations, on FA

coefficients is investigated at first for the steady

two-dimensional convective transport equation (III-35)

on a local element of uniform Erid 3pacing. Several

examples are then given to show the functional dependence

of FA coefficients on convective velocities (or A and B),

grid sizes h and k , and also the tim,, increment _.

After that, a brief comparison with some 9-point for,mulas

derived from f{nite dif{erence or finite element formu-

lations will be made. Thereafter, the ['A formula [s

employed to solve some practical test problems.
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(A) Comparison of FA coefticients for Laplace Equation

(A=B=0, hE = hW = hN = h S = h)

Table (6) shows a comparison of FA coefficients for

FASP, FAEL and FAPL formulations when Ah = Bh = 0 is consi-

dered for an element of equal grid spacing. One observes

that the FAEL and FASP formulations give the same values

since the second-order polynomial boundary profile is

recovered in FAEL formulation when A and B approach zero.

The resulting FA coefficients are close to the fourth-order

accurate Greenspan formula [17]. (i.e., CEC = CWC = CNC =

CSC = 0.2, CNE = CNW = CSE = CSW = 0.05). On the other hand,

the FAPL formulation apparently overestimates the

diffusion influence at four corner points due to the less

accurate piecewise-linear boundary approximation used.

(B) Comparison of FA coefficients for steady 2D convective

transport equation (h E = hW = hN = h S = h)

In Table (7), (8) and (9), three different convection

dominated cases of (i) Ah = Bh = 5_ (it) Ah = 50, Bh = 0 and

(iii) Ah = 50, Bh = 25 are considered in a local element of

equal grid spacing. It can be seen that all three FA

formulations exhibit a gradual upwind shift when the

convective velocities becomes large. The FAEL and FAPL

formulations give all-positive FA coefficients for all

range of convective velocities , while negative FA

coefficients are encountered in FASP formulation if



ORIGINAL PAGE |S

OF POOR QUALITY

81

either Ah or Bh becomes large. These negative FA coeffi-

cients although small are physically unrealistic [II].

On the other hand, the FAPL formulation still overestimates

the diffusion effect at the corner points NW and SW in

Case (ii). As mentioned earlier, this false numerlcal

diffusion is caused by the less accurate piecewise-linear

boundary approximation although _he physical diffusion

should be much smaller. From the comparisons made above,

one may conclude that the finite analytic solution

derived from the exponential and linear boundary

approximation is the most accurate one among the three

FA solutions considered. Furthermore, FAEL formulation

needs only one series summation term in the numerical

calculation of FA coefficients (see Appendix B), while

three summation terms are needed in FASP and FAPL

formulations. When unsteady three-dimensional convective

transpomt equation is considered (see Appendix C), the

manipulation effort and computational time for FAEL

formulation can thus be substantially reduced. This

additional advantage makes the FAEL formulation parctical

and attractive in solving unsteady three-dimensional

convective transport equations which is presented in

Section III-3. It is concluded that FAEL formulation is

the most accurate and most economic FA formulation among

the three boundary approximations considered.
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giuce the FAEL formu]ation gives the most accurate

result- tot both diffusion and convection dominant cases,

and requires Least computational time among the _hre,,

FA formulat ions, in what to]iows, onIy the }'A coefficients

obtolne,! from FAEL formulation will be considered for

unsteady two-dimensionaI convective transport equations

in unequal grid spacing local elements.

in Table (I0), the FA coefficient,_ for Laplace

equation are calculat_,d in a l_)eal element of h E : h W : h

and h N : h$ : k fox" different ,ispect rat io h/k. It can be

seen that when h/k becomes larger and l,lrger, the influence

from two nearest nodal polnI..9 NC and SC becomes more and

more significant, and a correct asymptotic behavior is

obtained when h/k _'_.

Table (Ii) shows the FA coefficients for steady 2D

convective transport equation of A = B : 20 in a local

element of k : 0.I and different aspect rat io of h/k : I, 2,

5 and tO. The re-;ults indicatt, that when the aspect ratio

is increased, the influence t z'om gW dec_'e,lses while the

influence fT'om the near_.st up.._l_',_am nod,ll point _;C

gradually increases. It should be remarked that the FA

coefficients remain positive lop all range of the

convective velocities consic|ered, a phv:;ica]ly z'ea_ist[c

solution is thus insured even if un_,,it,,ll }v'id spacing

local element is considered. Such a positiveness of

4

T
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coefticient_ must be 8uaranteed for any numerical method,

FA, FD or FA, if a physiL'aLty ,,ealistic solution is

expected.

When unsteady two-dimensional convective transport

equation (III-32) is considered, a 10-point FA formula

(III-51) which contains the information f,,om interior

point P at previous time step is obtained. If small time

n-I

increment i:_ <'onsidered, the influence of Sp from

previous time _;tep would be dominant as those shown in

n-I
'Fable (12_. On the otheI' hand, the influence of Sp

becomes vanJshingly small when the time increment becomes

larEe (i.e., Rh2/l * 0). In fact, the influence from

interior point P at previous time step may be written

explicitly from eq(III-51) as

R •

--LpI

t, I[
?Cp

while the FA ,'oefficit, nts at the present time step are

R ). 1'bus the
,,eduoed at the same rate of I/(l _ _-CF

unsteady eft e_,t is equivalent to an under-relaxation

f:ictoT, of the maEnitude of I/(I _ R
Cp ) when the iteratiwe

procedure _ adopted to obtain a steady-state solution.

_inee Cp is , function of A, B, hE, hw, h N and hS, the

under-relaxat ion factor may vary from one element to

another. It is thus expected that the solution obtained
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by marching in time will perform better than that obta:[ned

by the steady-state iterative method.

Before applying the finite analytic algebraic equation

(III-51) to solve any practical engineering problems, it

is helpful to compare the FA coefficients with some of the

9-point formulas derived from finite difference or finite

element formulations in obtaining algebraic representation

of partial differential equations.

In mo_t of the finite difference formulations, the

convective tel'm in convec_iw _ tran_:i_o,'t equation is often

approximated by central difference, upward difference or

exponential schemes to obtain a 5-point discretization

equation (i.e., interior node P and four neighboring nodes

EC, WC, NC and SC) for steady two-dimensional convective

transport equation (I[I-35). Raithby [12,18] investigated

these commonly used finite difference formulas and

concluded that more neighboring nodal points should be

conside[,ed if the false numerical diffusion is to be

reduced. A skew upstream diff,,fence scheme (SUDS) and a

skew upstream weighted difference scheme (SUWDS) are then

proposed [12] to brought in the corner points in the

control volume formulation of convective transport equation.

In the SUDS formulation, simple extrapolation formulas

were used to evaluate the convective and diffusive fluxes

through the control surfaces in terms ol the two upstream
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nodal points. However, the resulting 9-polnt formula does

have some negative coefficients as long as nonzero convec-

tive velocities are considered. In the SUWDS formulation,

an exponential and linear profile in terms of two upstream

and one downstream nodal points is employed to estimate the

ccnvective and diffusive fluxes through the control

surfaces, so that a 6-point formula including only one

upstream corner point is resulted. The 6-point formula thus

obtained is rather complicated and is not free from

overshooting when appl_ed to a simple step flow problem

where the main stream coming from a skew direction. This

physically unrealistic overshoot indicates that some of the

....,_efficients are st_ll negative. Recently_ Stubley et al.

.,%] independently proposed a method similar to the FA

.,ethod developed by Chen et al. [5,6] to obtain the

discretization equation for the steady 2D convective trans-

port equation. Instead of using the method of separation

of variables, the method of Green's function is used to

obtain the analytic solution by employing either second

order polynomial or piecewlse-linear boundary approxima-

tions. The result for second-order polynomial boundary

approximation is exactly the same as FASP formulation

described before, and the solution using plecewise-linear

boundary approximation is also given in FAPL formulation of

the present study by the method of separation of variables.
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Shay [13] developed a finite difference method to

appr_oximate the convective term in vorticity transport

equation in terms of the 9 nodal points in a square local

element, where the 9 coefficients are chosen based on a

Taylor-series expansion. With the diffusion term

approximated by the usual central difference formulation,

a 9-point finite difference discretization equation for

steady two-dimensional vorticity transport equation is

obtained. The resulting 9-point FD formula gives equal

weight for four center nodes, i.e., EC, WC, NC and SC,

for all range of convective velocities while the FD

coefficients at four corner points NE, NW, SE and SW are

always negative. Since no upward shift on four center

points is exhibited and physically unrealistic negative

coefficlents are always encountered at corner points

when convective velocities are not zero, it is expected

that the solution obtained by this FA formulation will

become increasing unreasonable when convective term

becomes large. In fact_ physically unrealistic two major

eddies flow pattern were encountered even when a fine

mesh of 0.0125 was used to solve a driven cavity flow

problem at Reynolds numbers of 2000 an0 5000.

In finite element formulation, an "upwind scheme"

similar to those used in finite difference formulation

was derived in [14,15] by improving the weighting function
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of standard Galerkin formulation with modifying functions

and a set of optimal parameters. The exact solution for

one-dimensional case is recovered in this formulation

when the optimal parameter is used. The same optimal

parameter is then employed to derive a 9-point formula

for two-dimensiona] convective transport equation. The

9-point FE formula thus obtained provides a gradual shift

to upwind when convective terms are significant. However,

large negative coefficients are often encountered in

convective dominated cases. Furthermore, when pure

diffusion case (A = B : 0) is considered, equal weight of

!/8 are resulted for all of the eight neighboring nodal

points. Thus, physically unrealistic solutions may be

resulted when applying this FE formula to multidimensional

fluid flow and heat transfer problems.

All of the comparison made above are based on a

square local element of equal grid spacing h E = h w = h N = h s

: h. When unequal grid spacing are considered, the results

obtained by finite difference and finite element formu-

lations may become even more unreasonable, while the FAEL

formulation still gives all-positive coefficients and

correct upward shift although some numerical diffusion are

encountered due to the use of interpolations. Thus, it is

concluded that the FAEL formulation is by far the most

accurate 9-point formula with a reasonable computational

expense.
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IV-3 Finite Analytic Coefficients for

Unsteady Three-Dimensional Convective

Transport Equation

In Section III-3, the most accurate and economic

exponential and ±inear boundary profile is employed to

derive the unsteadv three-dimensional convective transport

equation (III-75) in both equal and unequal grid spacing

local elements. The FA coefficients (III-79) for some

typical cases are shown numeri(-a]ly in t he following to

illustrate the relative importance of each coefficient, so

that the physical significance of the upward shift carl be

more easily understood.

In order to examine the effect of convective velo-

cities on the FA coefficients, several different convective

velocities come from differerlt directions are considered

in Table (13) thru (]5) for an equal grid spacing local

element of h E = h W = h N = h S = h T = h B = h. For the case A : B =

C = 0, the convective transport equation (III-75) reduces

to the simple Laplace equation. In this case, the FA

coefficients are symmetric to the interior' point P, and

the influence from eight corner points are quite small,

while the influence from th_ center of each boundary

surface is much more significant becau,';e they are much

closer to the interior point P. When the convective

velocity is gradually in('r'eas(:s along the z-direction, the

|
L
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influence ft-om upstreLtm nodal points becomes more and more

pt,ofound as ,_hown in Table (13), For example, the FA

¢oe[fEcient CBC [of the upst1'eam node int',,e.lses gradually

from 0.113631 at Ch : 0 to 0.980101 ,it Ch = lO0, while those

nodal values at downstr_,am ,lecl, t,,tt;e 8,t'adually t<) zero.

In T,lbl(, (Itl). .i l,e:;u|rant .'_mvec't_ve velocity _'omes

from SCB (::ot|th, t'_,r;tt,I', Botlom) t,dge is eon:_idel, ed, the

[nt'luence ft'om th,, up.,;tpt, am nod,il point :;CB gl'adually

[hCf'eases ft'om 0.0"_3911._ ,it Bh : Oh : t) to t1.,q?41"_?O ,/t Bh :

('h "-50. It _',In b_, se,,tl th,lt wht, t_ t_,e oot_vect ire veloc[t {_,.,;

become laI'_;t,, _h_. iI_tt, l'iol, nt_dal v,lttle @p i.,; m,t{nl V

deter-mined bv the tht-,,,, up.,_trt,,i,', uod,,l point:; ,qCB, BC and

SO. If the l't'sult,lnt v,'locitv {.'; t,ome From one of the

cot,net po_ut :;WB ,,:; t|l_nt, .-;hown it_ T,_ble (15), then the

infltlen_,'e fI'om the foul" tlpstt'eam nodJl points SWB, SCB,

WCB ._ud :_W(' w[It in_'r'.'.l:;,' wh+,n ,'onv.,ct ire velocities

become l,tPge. On the oth,'l' h,lud, the FA coeflicients for

downstream no, l,_l point,_ becom,, negliRihlv ,_mall when large

COl_VeOt ive Ve It3,' it ie:_ ,tl'l, t,liCOtlnt t,l'l*d ,

It c,_n b.. ::_,,,n t"om T,tbI,, (l_l) and (t!,) th.,t when the

t'esult,lnt v,,l(_citv is n,_t ,lli£n(,,t with the b',rld l_nes, +h_'

7-point loPmt_l,_,,; (i.t'., F.C, W(', Nt', ,'1(', "r(', B(' and the

interior point P) whi_'h a_'e ,_d_+pt,,¢t in many finite

d ilfePence m,,tho,l:; may ,,_;_ffer t_'om false numerical diffu-

sion, bec,tu._,, thr infol'mdt i(_J|_ ,'[%llf.._i|_It(.l ,It upntream



L

ORIGINAL PAGE |_i

OF POOR QUALITY 9O

corner points is not accounted for. On lhe other hand,

the 27-point FA formula can take care of the convective

velocity from any skew direction, thu._;, much accurate

solutions should be obtained when the 27-point FA formula

is used to solve any fully elliptic fluid flow and heat

transfer problems.

When unsteady three-dimensional convective transport

equation (II[-74) is considered, the influence from nodal

n-I

value ¢p at previous t ime step can be wr:[tten from

eq(l]l-81) as

R C
P

I+RCp

while the FA coefficients at the present time step are

reduced at the same rate of l/(l + _Cp_ ). Since Cp is a

function of A, B, C, h E , h w, h N, he,._ h T and h B, this

equivalent under-relaxation factor may vary from one

element to another. It is therefore expected that stable

steady-state solution may be easily obtained when the

unsteady approach instead of the steady-state iterative

method is used.
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CHAPTER V

METHODS OF NUMERICAL CALCULATIONS

In Chapter III, the finite analytic solutions for

unsteady multi-dimensional convective transport equations

were obtained. These FA formulas can be employed directly

to solve the general convective transport equations for

(e.g., temperature, vorticities_ concentration etc.) in the

presence of a given flow field. However, except in some

extremely simple circumstances, it is not possible to

specify the flow field or to solve it ana±ytlcally. In

general, one must calculate the velocity field numerically

from appropriate governing equations. For incompressible

fluid flows, the velocity components are governed by the

equation of continuity and Navier-Stokes equations as

equations (III-l) thru (III-4) shown in Chapter III.

Although Naviem-Stokes equations are complicated due to

the nonlinearity and coupling of variables, they are just

special cases of general convective transport equation

(III-72) to describe the transport processes of momentum.

As mentioned before, the problem of the nonlinearity can

be resolved by employing a local ]ineamization scheme in

mdrching or jterat iv_ processes. And thP difficulty of the
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coupling in sevepal variables may also be handled by

solv [ng sequent ! Y t he system of alg,,bva [c equat io_s fox'

each variable on_, at a time. In pz,]mitive variables (u,v,

w,p) fot,mulation, the finite enalytic numerical solution

of the ve]oeit v field can be obtained /rein three momentum

equations when the pPessur'e fieI,I i,,; m,lde to satisfy the

equatio_ ot _'ontinuity. _towev_,r, the prt:ssur`e-velovitv

coupling via equat ion of continuity happens to be a

particular' _Y'oublesom_' source in "-_olving [ncompr`essible

fluid flow lu'oblems for many vea:"._ (see Patanka_" Ill] and

Raithby au.l _tehneidez" [?[I]). For" compressible flow pr`oblems,

one may ext,'act pt,_.'_sur'e from density via equation of

state by con,_;ider_ng the den:;itv as the dependent vaz'iable

of equation of continuity. [?0]. But such a compressible

flow foPmu]at ion is [napi_r`opr]_ite to constant density or

incompt'essible fluid flows. ]'oz' [ncomiu'essible fluid

flows, t:h_' equation of continuity [_; t't'duced to ,I

constz'aint of velocity f lelcl to be s,ltist[ed indir'ectly

through the cor'rect choJ('e of pr,:ssut'e, n'his indiret't

specification of pressure fie],l, however, is not very

useful unless a direct method [s employed to solve the

whole set of d isct'et izat ion equat fen,; for' momentum and

continuity _quations simult._r, eouslv. In order to avoid

large storage and time expense associat,,d with dit'ect

methods, severai other foz,mulation..; which will be discussed

!
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later have been employed to eliminate the pressure or to

convert the indirect information in equation of continuity

into a direct algorithm for the calculation of pressure,

so that iterative methods may be used to solve the set of

discretization equations much more economically.

V-I Vorticit¥-based Formulations

In order to avoid the difficulties associated with

the pressure-velocity coupling for incompressible fluid

flows, one may simply eliminate the pressure by taking the

curl of the Navier-Stokes equations. For two-dimensional

fluid flow problems, the elimination of pressure from the

momentum equations (III-23) and (III-24) leads to a

vorticity transport equation (III-26). Furthermore, the

velocity components u and v can also be defined in terms of

a streamfunction (i.e., eq(III-28)) which satisfies the

equation of continuity (III-22). Thus, instead of dealing

with three vnriab]es u, v and p in continuity and two

momentum equations, one need to solve only two equations

to obtain the vorticity and streamfunction. The velocity

components u and v, which also presented as the convection

coefficients of vorticity transport equation, are obtained

from the definition of streamfunct[on (IIJ-28). The

troublesome third variable, namely pressure, can be solved

afterwards.
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There are, however, some disadvantages to this

well-known vorticity-streamfunction formulation. Firstly,

the vorticity boundary condition at the wall is not easy

to specify and is often the source of difficulties such as

inaccurate solution and instability. Secondly, it cannot

be easily extended to solve turbulent fluid flow problems.

Thirdly, the extension to three-dimensional flows where a

streamfunction does not exist is rather difficult, and

the complexity of this for,ulation becomes even greater

than that of solving directly the continuity and the

three momentum equations.

For three-dimensional incompressible fluid flows,

the elimination of pressure from Navier-Stokes results in

three vorticity transport equation_: (III-60) thru (III-62)

for three vorticity components. A streamfunction , however,

does not exist. Thus, one need to solve six equations

(III-60)- (III-62) and (III-64)- (III-66) for three

vorticity and three velocity components. (see Dennis et al.

[21], for example). On the other hand, a scalar potential

in additional to three vector potential
components I_X , _y

and _z similar to s_reamfunction _ for two-dimensional

case may be introduced, so that simpler governing equations

I (III-68) -(III-71) can be obtained. In both formulations,

I _hc complexity is actually greater than that of solving

nutty and thre,_ momentum equations for u, v, w and p
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directly. Furthermore, the vorticity and vector-potential

components are hard to visualize and interpret in three

dimensions, while complicated vorticity boundary conditions

are often encountered. Thus, a formulation using the

so called primitive variables, namely, the velocity

components and p_essure, becomes more attractive in solving

three-dimengionak fluid flow and heat transfer problems.

Sine,, _!_, governing equation for all of the vortic_ly,

velocity and scalar/vector potential (a streamfunction in

2D problems) components are special cases of convective

transport equation described in Chapter llI with R= Re or

R = 0, the finite analytic solution can be employed

directly to obtain the vorticity and vector-potential or

velocity field in vorticity-based formulations. Consider

the two-dimensional case as an example, the only nonzero

vorticity an(] vector-potential component, i.e., _ and

are governed by

E,xx + "'YYr = Re(_t + U£x + V_y) (V-l)

_xx + _yy = - 5 (V-2)

Application ot the FA method described in Section

Ill-2 to equations (V-I) and (V-?) leads to the finite

dn,llvtic a_;,'_,raic _:q_lation _n a :_m,_]l element as shown in

Fi_;. 7 as
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and

8
1

- (

_P G + R_elbp 1

n-I
bnbEnb + _e bp _r,

8
1

1

- bpf F) (V-3)

(V-4)

where f : Re [ (u'6) + (v' E,) ] is the higher order correction
x y

term defined puev_ously, bnb , bp and Q are FA coefficients

defined in _q(TTI-56) with A : Re up /2, I_= Re Vp /). b'nb, bp'

and G' _re FA coefficients defined bv the t_ame equation

(]I[-5b) bul with A : B : R : O.

The higher order correction term in eq(V-l) is

approximated by a representative constant value fp at node

P in this study. For example_ among other possibilities,

one may approximate the higher order correction term as

(u'<) - (u'&) (v'<) - (v'_,)
C W n S

[p : Rc I -0--_5 Ax + AXw) + O.S(Ay n , AVsY_ ] (V-5)

where ue': Ue - u D. and velocity Ue and vorticJty Se across

the east control surface denoted by the dashed line in

Fig. 7 can be obtained by suitable interpolations between

nodal points P and EC. Other variables in eq(V-5) are

defined in a sim]idr way.

When th,: initial and boundary co_d[tions for _ and

ar__ properlv speci[ied in the whole domain of calculation,



ORIGINAL PAGE IS 97

OF POOR QUALITY

the numerical solution for equations (V-l) and (V-2) can

be easily obtained by solving the system of algebraic

equations resulted from assembly of equations (V-3) and

(V-4). Details of the numerical procedures, which can be

easily extended to three dimensions, are outlined in the

following.

(i) Divided the domain of calculation into a suitable

number of small elements.

(2) Specify the initial condition for vorticity at all

grid points at t = 0.

(3) Calculate the FA coefficients b' ' 'nb' bp and G for

streamfunction _ using eq(III-56) with R = A = B = 0.

Since these coefficients are functions of mesh

sizes only, it needed to be calculated only once

for all.

(_) Solve the Possion equation (V-?) for streamfunction

at all field points by the 9-point FA formula (V-h).

The system of algebraic equations is solved by

tridiagona] algorithm (line by line method) until

converged. Over-relaxation factor is often used to

save the computational time.

(5) Specify tier. vorticity boun,!dry conditions .in terms

of streamfunc_[ons on or near the boundary.

(6) Calculate the velocity field u = _y and v =
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(7) Calculate the- FA coefficients bnb, bp and G for

1

vorticity using eq(III-56) with R= Re, Aij =_Reuij

and B.. : l
13 _-Revij at all field points.

(8) Calculate the higher order correction term f.. :
13

+ (v' _,) ] at all field points usingRe [ (u' r.)× Y

eq(V-b) whenever needed.

(9) Solve the unsteady vorticity transport equation

(V-l) Ltt all field points bv the 10-point FA

formula (V-3). The system of algebraic equation is

solved bv a tridiagonal algorithm unti] convergence

is achieved.

(10) Stop if the steady-state criterion is achieved or

the time t exceeds the maximum time period assigned.

t h
(ll) If not, return to step (4) for (n+]) time step

calculation.

It should bt, remarked here that when large time step

is used, but the ,:al_'ulat ion of higher order correction

term is based on the previo_,s time step t error mav
n-l'

increase in the transient _,,olutions although the steady

state solution is _maffected. In this circumstance, one

thmay use the updated vorticity _ j at n time step to

calculate the higher, order correction _erm at each internal

iteration. In other word, instead of performing internal

iterations at :_tep (9) only, one may update f.. by
13

repeating steps (_)- (9) until eonverge,t F.n.. is obtained.
l J
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As mentioned before, the real difficulty in cbtainin K

the velocity field in the primitive variable formulation

lies in the unknown pressure field. The pressure field

influences the velocity field through the pressure

gradient terms in momentum equations. Yet, there is no

obvious equation for solving pressure. If the velocity

components u and v are thought to be governed by the two

momentum equations (III-23) and (II_-24), Then the

pressure field should be, though indirectly, specified

by the equation of continuity. It should be noted that

when the correct pressure gradient is used in momentum

equations, the resulting velocity field from two momentum

equations automatically satisfies the equation of

continuity. Since there is no particular difficulty in

solving momemtum equations by the FA method, the main

task in using primitive variable formulation thus is to

translate the equation of continuity into a direct

algorithm for the calculation of pressure, so that the

correct pressure field can be employed in solving the

momentum equations.

In order to extract the pressure from the equation of

continuity, one may derive a Possion equation fop p_essure

by taking the divergence of Navier-Stokes equations. In

two-dimensions, th_s leads to
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o 1
-Dxx+ = 2 (u v +u2+v_) + _(D +D )PY3, x 3' x 3, ×x yy

- (uD + vD ) (V-6)
x y

where

D : u + v (V-6a)
x y

From equation of continuity D = 0, hence, equation

(V-6) reduced to

Pxx + = 2(u v - v u )Pyy x y x y
(V-7)

Thus, one may solve the Possion equation (V-7) and

two momentum equations (III-23) and (III-24) for the

variables u, v and p. However, since the velocity

components u, v computed from equations (III-23) and

(III-24) do not necessarily satisfy the continuity

equation, erroneous pressure solution might result from

solving the Possion equation (V-7). Consequently,

nonlinear instability may arise in solving iterativel3,

between the momentum equations and the pressure equation

(see Roache [i], for example). Man3, investigators

included part or all of the "mass source" term D..
l]

presented in eq(V-l) and forcing D_ 1 = 0 at (n+l) th time
13

step, so that a converged solution can be achieved.

However, slow convergence of the solution usually results.

Recently, S_ngh [22] solved the continuity, momentum and

Possion equation (V-7) alternatively using a momentum
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dominated or momentum averaging scheme. The major

disadvantage of these formulations is that iterative

scheme is explicit in solving u, v and p. For 3D

problems, the additional dimension makes the iterative

scheme converge very slow. Thus, a method that requires

explicit iteration among velocity components and pressure

variables is likely to suffer slow convergence.

Chorin [23,24] proposed an iterative scheme based on

Helmoholtz's decomposition theorem to resolve the

pressure-velocity coupling problem encountered in two- and

three-dimensional fluid flows. The Navier-Stokes equations

are arranged in a suitable form such that the pressure

gradient and unsteady term are respectively the

irrotational and solenoidal part ¢ a defined vector

field. An auxillary velocity field obtained by omitting

the pressure term in _lomentum equations is introduced in

performing the decomposition. The pressure field is then

extracted from the auxillary velocity field by requiring

th
the equation of continuity to be satisfied at (n+l)

time step. Coda [25] employed a simple variant of ChoPin's

method to solve the two- and thrue-dimensional driven

cavity flow problems. In his study, the same splitting

fractional-s?ep method used in Chorin [23] is employed

to calculate the auxillary velocity field, but the

pressure field is solved by a triple sweep iteration
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techllique. Ill botl_ c.:ic;es, complicat(-<l l,olln<la_,y condit:i<>n,'_

a['e needed to keep the numeP[cnl aceu_,ac'y. [',_kami _;

Kuwahdr,_ [ 26] mod[f fed ChoPin's method by considering

the acceler'ation z'athel, than the velocity field as the

(]_}_e'rldent; variclbles, the velocity field is then obta[ued

by integ[,,it ion of ,icce]ez'at[on fie1(] with Pespect to time.

[_u_ to the, exi_I[('_t I]atuPe in time for' these numet"ical

F_'hemes, the t _nle _rlcPem(,rlt is l'estl'i,_'ted to At < Ax/Iu I
[rid X

foz' stability __'oi_s[<.ieP,it:]on.

[;oveI'al other' m_,thods o{ handlill,_.,, tile pressure-

velc)_'[ty coupling] tu'oblems used lilt, velocity coi'z_ection

fOPIIIUldS _il]d i)l"essuz'e, coPPeetion equations to extPdcl

the p['essur'e ft'om the, equation of contjnLi[ty (Raithbv et al.

[20J). These met:hod,,; ape somewhat z'elated to Choz'in's

method, but ,ire equally applicable to steady and unstead V

numerical schemes. The basic ide,_ of these _Ippr'odches is

to express th{, ve[ocity-coPr, ection in tez'ms ol the

pi'essui'e-cor'i'ection in ,-in impez'fect: .flow f[eld_ so that

tile pt'essuz'e mdy t_e updated by #eqti[PJng the coi,z'ected

velocity field to ,';atisfy the eqtldtion of continuity.

Depellding on the appt-oximations made in updating pressure,

dif[ez'ent govel-nin,_!, equations for' [_messui'e may be obtained.

Detailed disetlss[ons and compar'[sons of sevet"al pPessuPe

update schemes can be found in Raithby et al. [201. Among

them, the i_messure-update-PatankaP (PIIP) scheme combined
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w_th Patankdr-Spadling p' eq_lation gives the best result.

In PUP schcme (,_ee also Patankar till), instead of updat{np,

pressure gradually from the pressure co_rection equat|on,

a pseudovelocity field obtained bv omi_ting the

pt,essure gt,,tdient ter'm {.n Ndvte_,-:.;tokes oquat ions {s

introduced so thnt the pr,,ssuPe field can b_' obtained

directly from a guessed velocily fie]d. It is noted that

the ps,,udovoloeity field {',; somewhat similar' to the

¢luxillary velocity field used by ChoPin 173] and C-,oda [2,%],

however, no app,'ox[mation is made _n obtain:ng

psettdovelocit [es, and the complicated boundal'v conditionr

top ,luxilla,'V velocit i,'S are not enoounter'ed ,_t all.

In the present study, a stagKel'ed grid for velocity

components which was first introduced by tlarlow g Welch

['27] in th,'ir MAC method is adopted to avoid the possibl,,

_znre,llisti,' pressure and velocity fields resulted fr'om

tile finite di! terence l'epreSental {ol_ tat pre,;sure gr'adient

term in momentum e,lUat ions and ,_ls,, the equation of

cent [nuity [ 11 1. |'[g. _ shows the local ions of staggered

grid tormat ion toz' u, v ,tnd p {n xv-ptane. Where ".", "-*"

,tnd "t" re:;l,ect iv,'Iv d,,note the no,l,, location for p, u

,ind v. ""h,., !o,'at ion _t w can be simil,tPly ,'on-;tr'u('ted.

The dashed tines repPet;ent the contl,ol volume faces, and

the pl'eSsII[_, ", it; calotlIdted at the ,'elltPI' 0| the control

volume. FoP ,'onven{.,n,,e, with e, n, t ,'espect ivel V denot in[_
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I j

v , w t and pp are assignedeast, north and to[, Ue' n

the same index as Uijk, Vi_k, wij k an(] Pijk respectively..

In such a staggered grid system, the 28-point FA formula

for unstea_ly thre_,-d[mensional momentum equcltiorl (II[-_)

in x-d[_,ect [on be_'omes

26

: 1 ( E bUn + Re bu un-i _ bU(Re Px + fu) ]
ue u Re bu bUnb _- e c e eG +_ I

(V-8)

where the pr{;ssure gradient term Px is approximated by

PEC- PP

Px - O._(Ax E + Axm)
(V-Sa)

and the higher or,let correction term fu Re[(u'u) + (v'u)
e M

+(w'U)z] le is a rept'esentatlve constant value evaluated

in a :;imi[ar way ,_s fp in eq(V-5).

In order' to r'esolve the pressuFe-velocity coupling

Y

probl,,m des('_'ibed hr.,fore, one may intT'oduce a pseudow"]o-

city field [I11 for u , o_- u , based on ,,q(V-8) or

26
1

ii Re bu n-i . bu fu
( Z bnbUnb + --- u_e - Gu + _-- b u 1 _ e o e e

) (V-9)

I e

Eq(V-9) defines the pseudovelocity and is essentially

eq(V-8) witl_o,,t the pressure. Therefore, the discret [,'o{1

momentum equation (V-H) can be written as
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= _ - d ( -pp)Ue e e PEC

where
Re b u

ed "

e 0.5(AXE + AXp)(GU + Re bU )
T e

(V-lOa)

and the FA coefficients bu bu and Gu
nb' e are defined in

eq(lll-86). Similarly, the other two momentum equations in

y and z directions can be written as

: $ - d ( - (V 10b)
Vn n n PNC PP)

wt : _t - dt(PTc - PP) (V-lOe)

where On, wt' dn and d t are defined in a similar way as

u and d
e e

The momentum equations (V-10a) thru (V-lOc) can be

solved for u, v and w as long as the pressure field is

somewhat estimated. However, unless the correct pressure

vfield is employed, the resulting velocity field Ue, n

etc. will not satisfy the equation of continuity. Let

the imperfect w, locity field based on a guessed pressure

field p be u , v and w or

: u - d ( -p ) (V-lla)Ue _ e P_C P

Vn : n - dn(PNc" PP) (V-llb)

: w t - dt(PT C- pp) (V-llc,W t
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In order to obtain an improved estimation of pressure

field, such that the resulting starred velocity field u ,

v and w _ after each iterative calculation for momentum

equations, will approach the true velocity field and

satisfy the discretized equation of continuity, one needs

to know how the volocity components respond to a change

in pressure field. By substracting eq(V-10) from eq(V-] 1),

three velocity correction formulas relating the

#.

velocity-corrections u e -u e etc. to the pressure-correction

,

p' = p- p can be obtained as follows

, ^,

u e - Ue = (_e - Ue ) - de(Pi_c - p%)F (V-12a)

v n- Vn = (Vn - Vn ) - dn(PTIc_ - p')}' (V-12b)

-- ^ ^ ! ! )

w t - w t (wt - w t) - dt(PT C - pp
(V-12c)

If we required the velocity field to satisfy the

discretized equation of continuity of the form of

D : tl + V + W : 0
X y Z

or

Ue - Uw Vn - Vs wt - Wb
D : + + - 0

Axp Ayp Az D

(V-J3)

an equation for p' in terms of u , v and w can be

derived. However, due to the implicit nature of velocity

correct ion tez'm_.; u - u _ v - v arld w - w _ where u _ v and
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w are function of p in eq(V-ll), the resulting pressure

equation for p' by substituting eq(V-IP) into (V-13) would

involve pressure correction p' at all grid points in the

calculation domain, and ultimately becomes unmanageable.

Since the velocity and pressure correction formulas

become trivia] in the final converged solution where both

the velocity and pressure corrections, i.e., u-u , v- v

w-w and p' : p-p , are exactly zero, the pressure

correction equation for p' can be considered as an

intermediate dlgorithm that leads to the correct pressure

field p and have r,o direct effect on the final solution

[]]]. Thus, it is possible to simplify or to omit part of

the velocity-corrections _n eq(V-]2a)- (v-12c), so that

a simpler pre.,;sure correction formu]a for p' can be

obtained. The final converged solut ion should not depend

on the approximation made on velo<'[ty and pt,essure

,_orreetion tormulas dur{ng intermediate calculations,

dlthough the rate of convergence will depend on the

appro×imate formulation of p'. The _implest approximation

as that used in SIMPI,F []I,28] or qlMPI.ER [11] 41gorithm_

,.*% ^W

is to omit the [nd{recl {nfluence u - u , v - v etc. in

_'q(V-12a)- (v-12-), :_uch that the velocity-corrections

_-,ln b,' ex[,re:;_ed ,'xpl i_?itly in t,,rm:; e._f the pressure

_,or_,,e,'t ion p' dr;
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-u = de(P_- p_c ) (V-14a)Ue e

- : dn(P_ ' (V-l_b)v n v n -PNC )

wt-wt - (V-]t_c)

I[ we r,,quired the approximate velocity correction

formula_u (V-lqa) - (V-It+c) to satisfy the ,i[scpelized

equ,lt[on oF ,'ont :_uit V (V-13), then ,z Pois:;ion _quation

fo_' pre,_;sut_e-L'orroct [on p' can be derived.

!

I

t : t + t ÷ dS _t ÷ dt +appp _ePEC awPwc + anPNC _SC PTC

abP"c't_- D (V-15)

whelm'

d d d ct
e W [_ s

ae AXp ' _. n ' **; Ayp

d t d b

"It ' JR Az

a n d

+ ,1 + ,% ÷ a + _ + ,!
'ti'- "it' W [| S t b

- tl v - V w -
tie w l_ S t wb

D - ÷ +
Ax l, AVp Azp

(V-15d)

The boundary ,,ondit[on for p' can be easily specified

itx the following :it,inner. If th,, pt',,,+;.:,st', , ;'_ given ._t .i

bound,if'v, [ .". , I' : Pgiven ' th,,t, 'ht,, pt'e,<;,,;ure-correct ion
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p' at the bouy]dary will be zero. On the other hand_ if the

: u , thennormal w_locity is given at a boundary_ e.g., ue e

there is no need to consider the velocity correction

' will beequation (V-L4a). !fend:t, no information for PKC

needed [II]. In both cases, p' : 0 everywhere at the final

stage of convergence when D : 0 in the whole domain of

calculation. Thus, the velocity-correction formulas

(V-14a) - (V-14c) becomes trivial as mentioned before.

After obtaining the pressure-correction p' from

eq(V-i5), one may update the pressure by letting

p : p + ap' (V-16)

with an under-r_la×ation parameter e. However, extremely

small under-relaxation factor _ may be needed for some

problems [20]. Furthermore, due to the approximation made

on velocity-correction formulas, many iterations are

needed to obtain d converged solution even if the correct

pressure field p is used as an initial guess. Since the

pressure-('orr,_c_t ion equation does a fair job in correcting

the veloc[t ies, but a rather poor _ob in updating the

press,_r(' [II ], a number of altern.lt [v_,n for updating the

l,ressure w_'r,; !_roDosed [20] to avo; _ this _hortcoming. Tn

the present _;tudy, the MPI,ER I gor e ,SI [i ] al ithm (i. . PUP

scheme in Raithby et al. [20]) is adopted to update the

pressure field. _y requiring equations (V-10a) -(V-10c)



ORIGINAL PAGE Ig

OF POOR QUALITY

]i0

to satisfy the discretized equation of continuity (V-13),

one obtains a Possion equation for pressure as

where

appp = aePEC + awPwc + anPNc + asPsc

abPBC -

+ atPTc +

(V-17)

%e - _ v - Q wt - Wb
: W + n s + (V-17a)

AXp Ayp AZp

and ap, a e , a w etc. are defined in eq(V-15). It is noted

that eq(V-17) is similar to eq(V-15), and the boundary

condition for pressure is the same as that for pressure-

correction p' also. But there is no approximation made

in obtaining eq(V-17). Thus, if a correct velocity field

is employed as the initial guess, eq(V-17) would at once

give the correct pressure field. In this fashion, one can

extract the pressure directly from an estimated velocity

field, and thus avoid the slow convergence resulted from

the approximated velocity-correction formulas (V-14a) -

(V-]4c). The pressure-correction (V-15) is used to correct

only the velocity field, so that a better estimated

velocity field can be obtained.

For unsteady flujd flow problems, the flow field is

required to satisfy the equation of continuity at each time

step. Unless a correct initial field which satisfy the
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equation of continuity is given, it is not possible to

obtain a physically meaningful transient flow field.

For problems where the initial and boundary conditions

ape properly specified, the transient numerical solution

can be obtained in the following manner.

(I) niscretize the domain of calculation into suitable

number of small local elemenl s.

(') t;p_:,-[tv the [n ili,=_l ('ol]diti(_n for velocity field,

t h
o,' g,_'nera] l\ dt (n-l) step.

th
(3) The velocity field at (n-l) time step is employed

th
as the initial guess for the veloc'_ty field at n

time step.

(_) Calculate the }'A coefficients b u b v b w etc.
nb ' nb' nb

dnd also the FA coefficients for pressure and

pressure-correction equations, i.e., a , a etc.
e w

(5) Calculate the higher, oz'dez' correction terms fu, fv

and fw if r,,,ed,',I.

(_;) ('al_'ut,-lte the pr;eudoveloc;t ie._; u, $, w from eq(V-9)

etc. in terms of velocity Field of (n-l) th time

step.

(7) ('alculat,, D from ,,q(V-17a) and solve the pressure

eq_at ior_ (V-I':_ b\, tt'idia_,on,ll algorithm to obtain

the pressure field; p.

(8) Tr,,a_ i,_,. t h'[s ;,t'essur'e fi, Id, t', a,,= guessed pressure

Field I' • ::_lv,, the momentum equat ions (V-lla)-
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(V-llc) to obtain the starred velocity field u ,

1_, ,_
v and w The .;yste.m ot algvbz'ai_" equations is

solvcd b\' '_.idiagonal algot'[thm.

(9) C,11culatc the mass sotu'ce ter'm 1_ in eq(V-l!,,t),

,tud hence solve tile ppessur'e-corl'ection equation

(V-]5) to obtain p'. The system ot algebl,aic equa-

t i,m.,: is solved b%., the ti,idi.agonal algol, ithm also.

(IO_ Correct the velo,'itv field using velocity-

colu,ccl iol_ toi,mul,ls (V-lii,l_ tht, u (V-14c), but do

l'lOt COI'I'_'CI Illi' pt'eS.'.ut'e. The velocity field u, v

,tt_,l w thu-; obt,lii_cd :,ho_lld :;,it i_s!\" the equation

o! cont in_litv tV-13).

• --,, ed the steps (q) to[ 1 I ) Rot tlt'i/ t o -it t'p ( il _ ill/d I elttdl

(I0_ unt il ,'onvei'._:cnc,' crilerioi: is achieved.

i.<'., m,lxlPi]kl ,. t'.

t l:_ ,qtop if the :_te,ld\'-st.lte c,'iterion is achieved

(i.,'., m,l×tLl n _u'._Tl
Ilk I -t e lc.), or" the lime tilk

c×cce,l:; th,' m,lximum time pL,i'iod a,.;si.gned.

th
(13) ft i_ot, i'etui'i_ to :;to I, (3) tof (n_l) _ime step

,',l l ,'_l l ,l t ion.

!'oi' pi'ol,lem:; where oi_Iv the ,..le,ldv-stale solution is

sought, on,' re,iX' i'el.lx the ,'oilvcl'gel_ce cl'itel'iol_ .tnd use a

l.ll'g,'t" time inci',.m,'nt tol' [ntel'medi,lt,' velocity field

,'.llcul.lI ion's; in thi:" t ira," m.u','hi.n.k,, procedui'e .is long as

dul'ing th,, .'omput,lt ion:; the variable:; become _tati.on,lrV,
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It should be remarked here that if uniform grids are

employed to construct the staggered grid coordinate system,

then the no-slip conditions cannot be satisfied exactly

on the moving and stationary walls. Thus, fictitious

bounda1_y _'onditions outside the solution domain are used

for velocities parallel to the walls. [20], [25]. On the

other hand, if nonuni£orm grids are employed, then the

no-slip conditions can be exactly satisfied by choosing

control volumes of zero thickness along the moving and

stationary walls [Ii]. In this study, the FA solution is

formulated in a ger_eral nonuniform grid local element and

_:ont_,ol volumes of zero thickness are chosen (see Fig. 8)

along the walls for the numerical calculations of two- and

three-dimensional fluid flow problems.
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CHAPTER VI

EXAMPLES OF ONE-DIMENSIONAL

f'LUID FLOW PROBLEMS

In this chapter, the unsteady FA formulas derived in

Section II!-i are tested for several unsteady linear and

nonlinear one-dimensional convective transport equations.

They are

(i) Large time (steady-state) solutions of linear

convective transport equation

= au 0 < x < i (VI-I)
ut + CUx xx - -

u(x,O) = 0 , 0 < x < I

u(O,t) : 1 , u(l,t) = 0 , t > 0

where the convective velocity c, in general, is a

function of space and time.

Exact solutions for t-*_ are respectively

(a) c : O, u: ] - x (Vl-la)

cx/e c/_
e - e

(b) c : i, u : --- (Vl-lb)
C ,£C_

1 - e

_(n-l)
(c) c : (x+O.Ol) '

(I.01) n (x+O Ol) n
u : - " (Vl-lc)

(l.Ol) n - (0.01) n
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(2) Large time (steady-state) solution of nonlinear

convective transport equation

= eu 0 < x < ! (VI-2)
ut + UUx xx - -

u(x,0) = 0 , 0 <_xil

u(O,t) : I , u(l.t) : 0 t>O

Exact solution for t +_ is

C !
--(x-l)

, l-e _ c'
, c' = coth 7-_ (VI-2a)U= C CV

--(x-l)
C_

l+e

(3) Transient solution of nonlinear convective

transport equation (Burgers equation)

u + uu = au -_ < x < _ (Vl-3)
t x xx

i , x_O

u(x,O) :
0 , x>O

u(-_,t) = I, u(_,t) = 0 t>O

Exact solution for eq(Vl-3) is given in [29] as

u(x,t) =

2_ 1i + exp[ ( x - 7t )]
erfc(-x/27_)

erfc[(x-t)/2V_-]

(Vl-3a)

Vl-i Linear Burgers Equation

In case (I), rhe finite ana]ytic solution for the

linear conw_ctjve trant{pomt equation (V[-I) J.S examined

for its large time behavior at several p_escribed
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convective velocities (a) c : 0, (i.e., he_t equation)

(b) c = 1 with _ varying from 0.001 to 0.] and (c) c-

s(n-l)/(x+0.01) (vat, tabl_ c(x)) with n rar, g_ng from 9

to 20. Different mesh sizes ranEing from 0.025 to 0.2

and time increments of O(h) to O(104h) are employed to

study the stability and the accuracy of tht-ee FA

formulations described in Section III-l. _n obtaining

the large time solution with small time inc,,ements,

many time s1:eps are needed which is not necessat'y unless

instdbi] [ty o<'cuz's. On the othel' hand, Jf the numerical

solution is stable, very large time increment can be

used, then the, steady-state solution can be obtained in

one or two time steps, although the tl_ansient solutions

may not be accurate. Since the three FA foPmulations

(Ill-10), (II[-15) and (TII-20) considered here are

all implicit Jn time, no stability problem is

encountel-ed even if very lal-ge time steps are used.

It is thet_elot'e ,llways possible to obtain the steady

state FA solution of eq(VI-l) e[fic[ently by using

large time inct'ements in equations (Ill-10), (Ill-15)

and (Ill-20). These steady-state results are shown in

Tables (16) tht'u (]9). It is seen that the steady-state

FA solution for heat equation (c : 0) appl'oaches the

exact solution (VI-la) in two or three time steps with

time increment t = I000 and gl-{d size h : 0.2 for all of

116
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the thz..e FA f'ormulations eons{det,ed. "%imilarly, the

_;teadv..state I'A _olution for" linear conveetive t_'anspoT't

equ._1 _on of un_tv ,:enveutive velocity (_'--_) conve_'ges to

th_ e×avt ,.;olut iou (Vr-lb) in _ to 4 time steps [oi" each

[ot,mu]aTion as those shown .[T_ Tables (_7) _ (18), However',,

'._m.lll eI't-o_' ._Ithough r%eg]_KJb_y sm,_ll ,ll'e Clicounl,,,,ed wh.n

u,','o,_d-ovd,'v !,olynomia] initial function (['ASP) is employed

in th,. FA toPm_l]atjon, wh_l,, the, ex._<'t <-onvel"Zence {s

,_,'h[,,v,,d {u ['A{'[,,U_,l hybv{d FA [or'mu_a_ions.

',_nc_, _he c:ous_l._1,.t_on ot ex[_on_,nti.ll and lin,.at'

{u_t _._I [un<'t iol_ ._:_ b,/:,_'d oi% the ._llalV_ i¢ solution of

,:t_,adv one-d[mru:;{on,_l _-ot_vect {vet t',_nsp_rt equation of

c'<,uSt,tnt conve_,t_ve ue|ov_ty _', the _,xact so_u_ou.'_ should

b,' _',',',,v_,I't,din I'AEI, ,_t_d hvbv_d FA to_'mul._! [ous as shown

iu Ta[,le:; (16) tht-u (18). Tt i:: th_,Pe(ol'e des[Pable to

,'ho_>,:_, some t,,,,_t ,',_:_,',';w[th variable conv,,vt [ve veloc.it {e:;

t,, t'iK_r'ou.';lV tes_ the ._,'_'u_',_'v of th,,ee FA for'mulations.

'lu thi:_ studv, ._ t..._pid-v,_t'vin£ velo,..ity field of c/_=

(_-l),'(×_t_.O]% {',; ,'h,_:_,'u tot' th['._ pnt'pos_. _t i'; found th,_t

tl_,, l',";_.llf.': _,_t' ,t{e!,,'1'_'IIt \'._t|e8 O| ll ]',i_,n}', []'_om _,) [0 _'_.]

,_,_-t'oe x,,,t'y w,'ll with tb,, ,,x,_,'t :_c)It_ ion,',, (VT-Ic), ro*'

_'_'.¢,_|_._ ,'V_'ll IOt" the..'.t".," n ". ,'0 tt:;i_y: ,I CO.if'St" _.t'_d t)[ t_.t,

the m.t.[mum ,'t't'ot' i,,::_t ill los:; th._ 0.[,% for all of the

thI"ee FA fo_'mulat ions ._ shown in Table (|9).

}

i,
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I'o_' tl_,' l ln,'._r ,'onv,.,'t iv,, lr,tn.,;|,o_'l ,,qi_atjon (Y[-|)

,'on,;ide,_'ed in ,'._:;_, tl), th,, conv,.e_ ;o_ ,'oett Lelent _',; a

t_r`e_cz'ibe'd ltll'_'l ion or ,;|_,_'e .zn,t tim,,, thn.;., ther`e i,';

l ill I,' pr`obirm in _t,,trl'nlininp. lhr _'o,,fl ieie.nt_ A and !_.

IIOWI, VIPr`, nonlillr,.tl, l,l,ol, l,,m:; .11"1' ¢_[ 1,'11 l'll_'tiLllltt:r`_] ill
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many engineering applications. It is therefore desirable

to study th_ nonl_nearity and linearization schemes

adopted in FA formulations for solving nonlinear convective

transport equations. In cases (2) and (3), the nonlinear

convective transport equation of convective velocity u

(i.e._ Burgers equation) is tested in a bounded and an

infinite domain to obtain the steady-state or transient

solutions. In case (2), different mesh sizes ranging from

0.025 to 0.I and time increments of order of h to 105h

are used to study the accuracy and stability of three

FA formulations. The convection coefficient in each

local element is approximated by a representative

I
constant (area-averaged A : _ _u in this study) known from

previous time steps, so that a marching process can be

used without iteration at each time step. It is found

that although the steady-state solution can be obtained

much more efficiently by using larger time increments,

there is, however, little saving in computational time

when time increment exceeds 103h. This phenomenon, which

differs very much from that for linear problems, is due

to the approximation made on the convection coefficient.

When large time increment is used, the convection

coefficient A based on previous time steps is far f_om

accurate. Consequently_ approximately same number of

time steps _s needed for T > 103h in order to achieve
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the same accurate large time solution. If transient

solution is desired_ one may either use a small Lime

increment or a somewhat larger time increment but with

internal iterations at each time step to update the

convection coefficients.

In Figs. 9(a) and 9(b), the transient solutions of

Burgers equation for _ : 0.i and 0.01 ate shown at t = T,

2T, 3T, 4T and 10T for FAEL (or hybrid FA) and FASP

formulations. As mentioned before, the transient FA

solutions are not accurate in these figures due to large

time increments used. But it shows that the steady-state

solution can always be obtained economically in a few

time steps and yet no stability problem is encountered.

It can be seen that the results obtained by FAEL and

FASP formulations are almost identical, while the results

obtained by hybrid FA formulation are exactly the same

as those obtained by FAEL formulation due to the large

time increment and the same exponential and linear initial

function employed. It can also be seen that the

steady-state solution at t : 10T obtained by FA formulations

agree very well with exact solutions represented by solid

lines. This demonstrates the accuracy of the FA method.

In order to compare the dependence of FA solution on the

grid sizes, the FA solution for the case _ : 0.01 is also

calculated using coarser grid of 0.i and 0.05. Even in



s

ORIGINAl. PAGE IS; .!

OF POOR QUALITY 121 ._

such a coarse Erid_ the agreements between the exact

solution and FA solution are still very good. For example,

if h = 0.05 is used, the steady-state velocity u at x = 0.95

is 0.983788 for FAEL or hybrid FA formulations, and is

0.983791 for FASP formulation. The errors are less than

0.3% when compared with the exact solution of 0.98661W.

In cases (i) and (2), the stability and accuracy of

three FA formulations for one-dimensional linear or

nonlinear convective transport equations are tested using

several different time increments and mesh sizes. No

instability problem is encountered even when very large

4
time increments of 0(]0 ) are used. Besides, the

steady-state solutions agree very well with exact solutions

even if large mesh sizes of 0.i or 0.2 are employed. For

case (3), a wave propagation problem [30] defined by

eq(VI-3) is invoked in the test for the accuracy of the

FA transient solutions. The problem is so_ved for s : 0.01

and 0.001, where a step function is used as the initial

condition. After a long time, the exact solutions should

be propagating with a constant speed V : 0.5 and preserve

the large time solution profile. In the present FA

calculation, a mesh size of 0.01 and a time increment of

0.002 are used for both cases. After 200 time steps of

calculation, no more changes in wave shapes are

observed in FA solutions, thus the long time solutions
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can be assumed. The results are shown [n Figs. 10(a) and

10(b) loT" _-0.01 and 0.001 respectively, l'ol' the case or"

a-0.01, the wave shapes obtained by three djffel'ent FA

formulations agz'ee very well with the exact solution.

}|owever, smal| phase eft,ors of about I% at-e encounteI'ed

in time dora,|in fo_' PA:_P and hybt'id FA fo,,mulations. The

FA solutions at'e p,'op,lgat_, at V = 0.505, 0.500 and 0._93

:,,t, FA';I', FA_:I. and hvb_'id FA lot'mulations, which ditfeI"

:.I iF,hi I_" |pore V : 0,5 tOl' the exact solut ioll. These ph,lse

,'p_'ops ,u'e pat, tly due to the apppox[mation on bounda_'y

condit ions ,_nd pa*'t ly due to the line,t_'izat ion of

convection coetflcient. [t is possible to |'educe these

ph,tse et'z'ot's by employing a bettel, estimated convection

coefficient based on two ox" mol'e time steps interpolation

so that the nonlinea_'itv of the govet'nin g equation c,_n be

more accul'.,te[y ,,;[mulated. floweret', the internal iterations

needed ,lay make the pt'ocedul'e vet'V t_me-consuminR. Thus,

i,U the pl'esent ",;tudv, the convection coetfivient is simply

appt,oximated b V a constant known from pr,evious time ,,;tep

tn_l: ,.;o that ,I non-itel',Itive Indl'vhin_', process Call be

emp toyed .

['of the case a = 0.001 whet'e vel,y shat'p gradient is

encountered, thr_'(: FA foz,mul,ttlont; begins to differ from

the exa,'t solution not only in the speed of pl,opagation

but ,tl,4o in th,, wave shape. It can be seen thai the phase
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error is small in rASP formulation since a second-order

polynomial boundary approximation is used. However,

unrealistic overshoots and oscillations which come from

the inadequate second-order polynomial initial function

are seen in the downstream. On the other hand, physically

realistic solutions are obtained {n FA}'[J and hybrid FA

formulations although ths phase e_rors and the discrepancy

in wave shape are somewhat larger due to the coarse grid

and also the :;imple lineavlzation of convection coefficient

employed.

It is noted that the wave shapes obtained by FAEL and

hybrid FA formulations are not exactly the same even

though same exponential and l_near function is employed.

This indicates that an imp,,ovement in the boundary

approximatJoI_ in time domain may improve the accuracy in

space domain al.;o, t{en,-e, a FA formulation using exponential

and Iineau init ial funct ion and higher order boundary

appl.oximation_._ should reduce the phase ez'roP and also

gives a better agreement in wave shape with exact

solut ion. The del, ivation bat;ed on hiKher ol,del" boundary

dppl'oximations is, howevel', not ._,iven in the present study

because the extension to mult i-dimensional pl-oblems is

quit,, c,om[_lic,lte. F_lu_hermore, the st,,,idy-state solution

is coml,letelv un,_llI'_,ct,,d by this im_,l'ovement.

1



ORIGINAL PAGE III

OF POOR QUALITY

CHAPTER VII
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FLUID FLOW PROBLEMS
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In previous chapters, it is concl%ded that the FA

formulations using exponential and linear boundary

approximations give most accurate results and require

least computational time among several FA formulations

considered. Thus, in studying two-dimensional fluid flow

problems, the FA formula based on exponential and linear

boundary approximations is employed to solve two fluid

flow problems where comparison with experimental

measurements uP other theoretical or numerical calcula-

tions are available. The two problems are

(i) Incompressible flow in a square cavity driven by

a moving wall.

(2) Development of vortex street behind a rectangular

block.

The two-dimensional driven cavity flow is often

chosen for the purpose of examining the numerical

solutions of Navier-Stokes equations [5,6,13,25,26,31-48].

This ideal prototype nonlinear problem is of fundamental

importance because it is a part of the large steady and

unsteady separated flow. In addition, it is a flow where
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the fluid is set into motion by the viscous shear on the

moving plate and the viscosity and nonlinear convection

affect the entire flow region. Their geometry simplicity

make them by far the best model problem for testing new

numerical schemes.

The numerical methods presented in the literature

for the driven cavity flow differ not only in problem

formulations, diseretization schemes_ boundary

approximations for vorticity and pressure on the no-slip

walls, but also in the method used to solve the resulting

system of algebraic equations. Detailed reviews of

previous works and the comparison of their numerical

results in the two-dimensional driven cavi*y flow are

given by, ,_mong o_hers, Vahl Davis g Mallinson [32], Tuann

$ 01son [33], Gupta $ Manohar [35] and Chen et al. [6].

In this study, the improved 10-point FA formula is

employed to solve the two-dimensional driven cavity flow

problem in both the vorticity-streamfunction and the

primitive variable formulations. The unsteady approach

is used to obtain both the transient and steady-state

solutions. If only the steady-state solution is sought,

a good init[,,l guess (for example, if known, a flow

profile at lower Reynolds number) and large time

increments can be used to obtain the steady-state solution

much more t conomi_,dlly. Furthermore, the convergence
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criterion for intermediate time steps can be relaxed to

reduce further the computational time.

Although there are several experimental works [q9,50]

and numerical solutions available for the steady

two-dimensional driven cavity flow problems, the detailed

results for the transient behavior of the starting cavity

flow are, however, very limited. It is thus somewhat

difficult to judge the accuracy of the transient solutions

obtained by the present FA method in the starting cavity

flow test problem. In order to test the applicability of

the 10-point FA formula for unsteady two-dimensional

convective transport equation more rigorously, it is

desirable to choose an unsteady flow problem with unique

feature and comparable solutions. In this study_ the

development of vortex street behind a rectangular block

is chosen for this purpose.

Numerically, the vortex street prediction behind a

rectanKular block was first investigated by Fromm _ Harlow

[51]. In their study, the upstream and downstream boundary

conditions were assumed to be periodic. Artificial

perturbations in vorticity field were introduced to

trigger the vortex shedding process. Numerical results

for streamlines, stationary streamlines and streaklines

patterns are presented for Re : 50, i00, 200, 300 and 6000.

Smith & Berbbia [52] employed a finite element formulation
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to solve a similar problem for Reynolds number of 20, 50

and i00. Due to the relatively long obstacle (0._m lon 8

by 0.166m wide) they used, the vortices are rather weak

and were not observed for Reynolds numbers under i00.

In both cases, rather small time increments are needed to

obtain accurate transient solutions. As to the experimental

works, the Strouhal numbers for several similar shaped

blocks were given in [53]. For flat plate obstacle

with sharp edges, the Strouhal number reaches a maximum

value of 0.16 around Re=100, and then gradually decreases

to 0.13 [or very large Reynolds numbers. Although

experimental measurement of transition from laminar to

turbulent vortex shedding is not known for rectangular

block, however', it is observed for cylindrical obstacle

to occur around Reynolds number of ]50 [53]. In Prandtl

Tietjens [54], streamlines of flow past a flat plate

were shown for Re = 0.25, i0 and 250. Vortex street flow

pattern was observed at Re = 250, while symmetric flow

patterns were observed at lower Reynolds numbers of 0.25

and I0.

Since it is not easy to specify an initial velocity

field that satisfies the continuity requirement for vortex

street problems formulated in terms of primitive variables,

the vorticity-streamCunction formulation is employed in

the present utudy. Relatively coarse nonuniform grid
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are used to obtain the physically meaningful solutions

economically. In addition, large time increments are

employed to further reduce the computational time needed.

VII-i Two-Dimensional Startin K Cavity Flow in

Vorti61ity-St_ela_ function Formula%ion

Consider a square cavity as shown in Fig. ii, where

the cavity with depth and width of length L is initially

filled with incompressible fluid at rest. The bottom wall

is then set to move with a constant speed U 0 in the

positive x direction when t > 0. The othe[' walls are kept

at rest. The flow is assumed to be two-dimens_onal with

constant transport properties and laminar.

Introducing the dimensionless variables

X Y U V tU0

v = and t =--_x: E , Y:_ , u:u0 , U 0

i

J

the dimensionless Navier-Stokes equations in

vorticity-streamfunction form can then be written as

+ = Re + u_ + v_ )
r'xx _yy (&t x y

where the vomtieity _ is defined by

(VII-I)

and

: vx - Uy : -(_xx + _yy)

u : _y , v : -_x

(VII-2)

(Vll-2a)
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The Reynolds number Re : UoL/U is based on the

velocity of the moving wall U 0 and the cavity depth L.

The no-slip and impermeable conditions are specified on

the four boundaries of the cavity as follows

(I) On the bottom wall _ : 0, _y : 1 (VII-3a)

(2) On the top wall _ : 0, _y = 0 (VII-3b)

(3) On the left wall _ : 0, _x : 0 (VII-3c)

(4) On the right wall _ = 0, _x = 0 (VII-3d)

The vorticity boundary conditions for eq(VII-l)

may be approximately derived from the above boundary

conditions using Taylor-series expansions of the

streamfunction from the wall to interior points normal

to the wall. Many alternatives of boundary conditions

were investigated by, among others, Vahl Davis % Mallinson

[32], Gupta _ Manohar [35], Benjamin E Denny [37]_

Quartapelle [38] and Gupta, Manohar g Noble [36]. In this

study, the simple first-order and second-order boundary

conditions are adopted. They are

(i) First-order vorticity boundary conditions

2_w-I 2

_w - _-- - _-- (_n)w (VII-4a)
h w
w

(2) Second-order vorticity boundary conditions

[
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I_0

8¢w-i - _'w-2

_w - 2h--_--" _ (_n)w (Vll-4b)

w

where the subscripts w, w-i and w-2 denote nodal points

on the wall, and one or two points in from the wall, n is

the outward normal measured from the center of the cavity,

h w is the first grid size from the wall. In eq(VII-_b),

the first two mesh sizes near the wall are chosen to be

equal (both equal to hw).

As to the initial condition, a zero initial vorticity

field is given at t : 0 to simulate the initial development

of starting cavity flow.

_(x,y,0) = 0 (VII-5)

Following the numerical procedures described in

Section V-l, the governing equations (VII-i) and (VII-2)

with boundary conditions (VII-3), (VI[-I_) ,_nd in_tla]

condition (VII-5) can be easily solved to provide the

numerical solutions for starting cavity flow. In this

study_ the starting cavity flow is tested for Reynolds

numbers of I00, 400, i000, 2000 and 5000 in several

uniform or nonuniform grids ranging from llxll to 51x51

and time incremel,ts from 0.05 to 2.0. The transient

solutions for Re--I000, 2000 and 5000 are studied in

details using both the first- and second-oz'der vorticity
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bounddY,y ('ondltions. The coave,-gence ¢','iterions between

-7
two i ter, dt_ons at each time step nr,e i0 for' stream-

function _ind 10 -5 iRe = 1000 and 2000) or" 10 -6 (Re = 5000)

for vo,'t icity ,'e,_;pec_.ively. An ow, r-_.elaxation factor of

1.6 tot' th," ii_te_'n,iI it,,_'nt ions of st pe,Jmfunet ton is used

to r'c,luc,, the computat ional t ime needt:d. For" steady flow

<',lib'Ill,It ion ot },',t' : Its0 ,tnd qO0, d no:_zcr_ [nit i,tl

,'ondit ion ,_n,I l,tl'ge t ira,' inc_,ement:; ape used to obtain

the ['A ._:olut i,)n,; in ordep to ::,lye ,'omp_ltational time.

The ,'(,nve_'g,,i,,,e ,','it_,l,[on fol' {l_t_'l'lhtl ite,'_ltion,'; or

F_I l'e,.tnl| _llh't iOl_ rind vol't [_" i t y ,iFe ,| I ,,;o rcl,lxed to r'educe

the ,,omput,lt iort,ll t ira,'.

A typical tpan:;i,,nt solution of starting ,,,tvtt v flow

l_a:;vd on the, :_e,.ond-or'dcl' vorti,'ity boundal'y condition

(V[t-hl,_ i:; ,-t_,_wn in ['[,_,..,_. 12 and !7_ _<,,, Re-1000. A

_lx_l nonullitol'm ),,Pid :,v:;tem {s used with me_'ih sizes

,_rrangin£ as 0.015 (t_ no,t,,,,;1, 0.0.'!, (,_ nodes}, 0.03 (16

_od,,,_;), 0.0,'! (,'_ nod,,sl and 0.015 (_ node-:) in x and y

,lir,,c'_ ions. A time in,'_',,m,_nt of 0.I is used for' the

t il,:;t _ltl t imp' :'l_'t,:a , ,tl t_,l' Ihdt ,t t imp' [n,.r,ement of 0. [[,

i:: ,'mt,lov,',l. The :,tl',l,!%.'-5_t_ltt' ,':t"3['ll ion i:; ,l_'hieved at

-II -II
t -_O with A¢ _ 10 ,_nd A_. ", I0 between two time slep,,_.

!t can t,o ,'.,,.,nft'om Fi._,,. 1"2 that the vortex center move,,;

!r<,m th,, l_,w,,r l,,ft , _,_'n_'r at the, _:,i_,1_,, time of t -l

tow,ll,,l t|:_' ,'.'hi,'," oF the cavity at latr, r t imr, of t : _0,
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while th_ vortie[tv Renet'at_;,l by th_ moving,, w,ll] i,n

convicted ,ind _lit'[us,_d g_,adu,lliv to the J,_wnstream and

the ¢,_ntei' of t h_ cavity a_ ,,_howi_ ,in Pig, 13, A careful

•_t_i,IV .._how_;th,_t ,_ ,_,par,ltioil bull: fii,,;t ,_ccut'u near th_

mi,!,ll,, .._._'tiol__! th,, z'_ht w._.ll ,tt,ound ! : 3, This

._i¢'|_,ll',lf iOll [_tli[ _ t'_llll llltl_'.'_ lO l_l'OIV ,illtl tll_.lVl"ll dt)wrl.'_tt'_',llll

Wt_il_' ,Inotiti'r _,,r.li,,tl ion btilb ,lt_|,i',ll':; .it lht_ tltli)el"-I'ili, tll

,'Oi'llOl', .4_i t illlt' {ih'l'e,l.'iO':_ th_ ,,lt_t_,-II',it io1_ btilb ,it I'il_ht

w,tll ill <'c_i_v_,i'te_l itii'li_'l' tll_w,ir<! ,t11<1 ,,v,,ntn,_]IV i'nlel'L4_',_

with i tl_. _,nl,ll't_,,r,l lil_l_¢'i'-ri.t41_i <'ol'n_,l" s_q,.tl,,li{on l',.ll, ion

.it'_ititi_l t :: !, .l:; :;tlOWtl {U fig. 1.'(,'). A;i th,' ntr_,n!ttl_ <_f"

thl, t_l'ilil.ll'V voi't_,x ,'ont iilti¢,,,; t,_ I_,l'OW JUi'illt', ti',iil,'lleilt

•it.lit, iil_' til_t_,'i'-l'{Fth! <'OI'ili_i'"._'t_.ll',il il._ll I,tl|b l'_',l_')l_";

,I ill, iximtlnl ::i;,_' ,ivicl ih_,vl l_,,l_,in:; to ::hi'ink ,li,oiintl I = 10,

AIIi'I' I -" |t)_ ihl' til_l_'i'-i'il_,lll ._,','Olld,ii'\' v_}i't_.'x _'ollt illl, li""

to :;hi'ink dtl,, Io I)1o l'tll,thl_i' iil,'l'i',lSl' ill the .,itl'erii_tll

of lh,, ln'im,_l'V VOl'll, x_ bti _, the, til, l_el'-l_tl _,cond,_i'V

vol, l_,x _,llI,li'l_,,,; t'l',l,lti.illv Io il:_ m, IX{llltlill :',i:,t _ • W)lt'll lllt'

:;t¢,,l<lv-.il,lt¢, ::olui {Oll i'i ,l<'hi,'Vl',l ,ll't_illld l :: 110 I thl _

,nti'_'ili_th of the' l_l'im.il'V v._i'i_,x i',',l<'h,','; ii.n maximtinl v.llli_,

ol 0,i0.1tl!,.I, ,'n th¢' _._thet' h,llkl, thf tipt_'i'-i'[i_kt ."i'_'oikl,lt'V

VOI'I_'X l't, dti<'i'_i to .Ibl_ul h.ilt ,it it:; nhlW_llltilll ,_lili,, Thi'

:It_,<l,lV-:_t,lt_' :,,_ltlt i,_n ,_bt,iill,,J {i_ ih,, l,l',','i_)rlt _',ll,'lll,II i,lll

,illre,,a f,lii'IV welt with thosl" obt,_inc'd bv lilkltmitilu [39]
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large number (101xl0]) of uniform grid in obtaining the

numerical solutions.

In Fig. 13, the development of vorticity exhibits a

boundary layer like behavior near the wall. At the initial

stage of development, the high velocity gradient alan E

the moving wall generated a strong vorticity field near

the moving wdl] and the lower-right corner. This highly

concentY,dted vorticity field is then convected downstream

by the fluid driven by the moving wall. At the same time,

,l negative vortic[ty t:ie]d starts to generate near the

right wall via the increased velo,'[ty gradient along the

right wall. Eventually, the positive vorticity field

generated bv the moving wall and the negative vorticity

field generated by the stationary right wall are

transported downstream and simultaneously diffused into

the center of the cavity. When the flow approaches

steady-state, the vorticJty field generated by the moving

and stational'v walls is then balanced by the viscous

di_;sipation of vorticity field. Thus, even at the

steady-stat_,, tht, vor't{c{ty is continuously generated by

the mov_l_, and ,;t.tt i_,n.lry walls an,l d:ftu:;,,d into tl_e

_'avity c'reati:l g a bounda,'y layer phenomenon near the wal]s

with a nearly unito='m vorticity core surrounded the

vortex center.
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Quartapelle [38] investisated the starting cavity

flow for Re = 1000 using a time increment of 0.05 for 300

time steps, The transient streamlines and vorticity

contours exhibit similar patterns as those obtained in

the present study. Uowever, detailed comparison can not

be meaningfu]ly made because seconda_v vortices were not

shown in his study. Furthermore, physically unrealistic

oscillations were encountered in Quartai_elle's calculation

of vorticity field. It is suspected that these

oscillations would be amplified gradually by the

instability of his scheme, and his solution may become

unstable if the calculation is carried beyond t : 15. On

the other hand,smooth results are obtained in the present

study for d large time even if coarse meshs of 21×21

and 31×31 are used.

The numerical solutions obtained in coarser nonuniform

grids of 21x21 and 31x31 exhibit the similar transient

behavior as those shown in Figs. 12 and 13 for finer grid

of %ixql. However, the strength of the primary vortex is

somewhat lower and the sizes of secondary vortices are

somewhat larger. Figures 12 thru 15 compare the steady

state solutions of Re : 1000 in 41x41 grid with those

using nonuniform meshs of 21×21 and 31x31. It can be seen

that there is not much difference between results obtained

by 31x31 and 41x_l nonuniform Erids. Thus, one may
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conclude that the transient solution obtained with 41x41

grid is sufficiently grid independent and accurate.

In this study, both the first- and second-order

vorticity boundary conditions are tested for selected

cases. The result shows that the second-order vorticity

boundary condition gives better performance for all of the

cases considered. For example, when a nonuniform grid of

21x21 with mesh size ranging from 0.03 to 0.07 is used to

obtain the streamlines and vorticity contours shown in

Fig. 14 for Re = 1000, there is a 3% improvement in the

maximum value of streamfunction (i.e., 0.0768 vs 0.0792).

But the solution employing the first-order vorticity

boundary condition gives the solution of maximum

streamfunction to within 1% (0.0989 vs 0.0998) of that

employing the second-order vorticity boundary condition

when a finer mesh of 37x37 is used. Benjamin & Denny [37]

reported a much larger improvement in their study of

Re : i000 using an equal grid of 41x41 with the second-

and third-order vorticity boundary conditions. The fact

that the present study gives more consistent results may

be due to that better numerical scheme and finer mesh

sizes near the wall are adopted.

It should be remarked here that the vorticity

boundary condition happens to be a particular troublesome

source of causin£ divergent or unrealistic solutions for
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many numerical schemes. Thus, many sophisticated

treatment of boundary conditions were proposed to obtain

reasonable solutions. For example, Greenspan [_0] updated

the stI'eamfunction_ on an "inner bounda_,y" ]ocated one

mesh point in from the boundary by a formula different

from those for other field points to calculate the

5
steady-state cavity flow up to Reynolds numbers of 10

Nallasamy g Pr_sad [41,42] used the similar type of

vorticity boundary condition as that of Greenspan [h0] to

obtain the numerical solutions for steady driven cavity

flow over a wide range of Reynolds numbers from 0 to

50000. Nallasamy g Prasad [42] reported that two major

eddies flow pattern would be encountered in numerical

solution if the additional formula for streamfunction on

the inner boundary was not employed. Vahl Davis & Mallinson

[32] studied this type of boundary condition in both

uniform and nonuniform meshs and concluded that the

overspecification of streamfunction on the "inner boundary"

would force the boundary layer to adhere closely to the

wall. For high Reynolds numbers, this could compensate

the effect of the false numerical diffusion by increasing

the size of the core region. Thus, unless v,r_ fine meshs

are used, the results obtained in this way are not

reliable for Reynolds numbers higher than I000. Another

commonly used higher order vorticity boundary condition
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is obtained in the following form by modifying the first

truncated term in eq(VII-4a)

_w - 3@W-lh7 hw3 (_n) w _w-12 (VII-6)

w

This second-order accurate boundary function was

used by, among others, Gosman eta]. [43], Bozeman &

Dalton [44] and Vahl Davis & Mallinson [32]. Vahl Davis

Mallinson [32] reported that the central difference

numerical scheme can be stabilized for Reynolds numbers

higher than I000 if the second-order vorticity boundary

condition (VII-6) is employed. Their attempt for Re = 5000

was, however, not succeeded due to a similar numerical

instability encountered in Re = I000 when the first-order

vorticity boundary condition (VII-4a) is used. Recently,

more sophisticated vorticity boundary conditions based on

fourth-order governing equation for streamfunction were

derived in Quartapelle [38] and Gupta et al [36]. However,

the performance of these schemes in predicting high

Reynolds number flows has not been rigorously tested.

It c,ln be seon from these discussions that the convergence

|)ropert [es for various numerical _c'hemes depend strongly

oT_ the _reatm,_nt which is adopted to dUproximate the

vorticity boundary conditions. Moreover, even when
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converged solutions are obtained, there are still large

discrepancies of local and global quantities between

apparently comparable calculations. Most of the researchers

tend to believe that the discrepancies come from the

approximations made on vorticity boundary conditions. It

is, however, in view from the presen_ study, more likely

that numerical scheme itself and not the vorticity boundary

condition which is responsible for these discrepancies

and instability phenomenon. In the present study, even the

simplest first-order vorticitV boundary co_dition still

gives reasonable solutions for all cases considered.

Furthermore, the use of higher order vorticity boundary

condition does not significantly change the global or

local features of the numerical solutions. Thus, the

stability of the present FA method is demonstrated. The

all-positive FA coefficients and desired upwind shift on

FA solutions gurantee a physically realistic and stable

solution with minimum false numerical diffusion as long

as vorticity boundary conditions are properly posed.

However, it is found that smaller time increments are

needed to obtain satisfactory solutions if higher order

boundary conditions are used. For example, when the

second-order vorticity boundary condition (Vll-_b) is

employed for Re : 1000 with 41x_l nonuniform mesh, the

attempt to un,, _ time [ncrement larger than 0.2 is not
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succeeded, while, if the first-order vorticity boundary

condition (VII-4a) is used for Re : 2000 in the same

nonuniform grid, time increments as large as 0._ can be

used without difficulty and larger time increment is

still possible for the calculation if one needs only the

steady-state solution. Similar situations are observed

in other test cases. Thus, it is suggested from the

present study that finer mesh sizes near the wall in

company with lower order boundary approximation is

preferred in obtaining the approximated boundary vorticity

values.

For the starting cavity flow of Re : 2000, the same

41×41 nonuniform grid is used to obtain the transient

streamlines and vorticity contours as those shown in Figs.

16 and 17 respectively. The simplest first-order vorticity

boundary condition (VII-4a) is employed to update the

boundary vorticity values in every iteration. Time

increments from 0.I to 0,4 are used for 240 time steps

until the steady-state solution is reached at t : 60 (t :

0.1×40 (steps) ÷ 0.2×80 ÷ 0.3×80 + 0.%×40) with A_ < I0 -II

-ii
and A_ < i0 between last two steps. After that, the

second-order vorticity boundary condition (VII-_b) is

employed for 50 time steps to oblain an improved steady

state solution at t : 65. The transient solution for Re =

2000 exhibits similar behavior as those for Re = I000 before
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t = 20, except that the separation bulb on the right wall

•appears earlier around t = 2 at a lower position as shown

in Fig. 15(5). After t = 20, the upper-right and

upper-left secondary vortices almost reach their

stationary sizes, while a third secondary vortex comes

to exist near the lower-left corner around t = 2_. The

steady-state solutions mostly agree with those obtained

by Vahl Davis & Mallinson [32], Pepper & Cooper [45] and

Chen et al. [5,6] where the existence of a similar third

secondary vortex is reported. The appearance of the

third secondary vortex is also predicted in Olson _ Tuann

[34] and Bejamin & Denny [37] for comparable Reynolds

numbers. However, the shrinking of the upper-right

secondary vortex was not predicted in their study. In

Figs. 16(i) and 17(i), the steady-state streamlines and

vorticity contours based on second-order vorticity

boundary conditions are given for comparison. It can be

seen that the use of the higher order vorticity boundary

conditions does not significantly improve the global or

local features over those obtained with the first-order

vorticity boundary conditions. This is because small mesh

size of 0.015 is used near the wall, in the present

calculation, the strength of the primary vortex obtained

by the second-order vorticity boundary conditions

increases only for about 1% (0.093q vs 0.09q3) over that

by the first-order vorticity boundary conditions.
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The FA solution of startln K cavity flow for Re = 5000

is also calculated using a 51x51 nonuniform grid with

mesh sizes ranging from 0.01 to 0.025. A time increment

of 0.i is used for the first 200 time steps, after that

a time increment of 0.15 is used. The numerical solutions

shown in Figs. 18 and 19 are obtained using flrst-order

vorticity boundary condition (VII-l,a) until t = _7. The

second-order vorticJty boundary condition (VII-#b) is then

used to obtain the steady-state solution at t : 52.

Comparison of solutions for different Reynolds numbers

shows that the separation bulb on the right wall occurs

earlier and closer to the lower-right corner as Reynolds

number increases. Furthermore, the third secondary vortex

enlarged considerably while tertiary vortex comes to

exist at upper-right corner. These features agree well

with the study of Benjamin & Denny [37] where the

numerical solution for Re : i0000 was obtained in an

151x151 nonuniform grid. Due to the relatively coarse

grid used in the present study, the strength of the

primary vortex for Re : 5000 is somewhat lower when

compared with those obtained by Benjamin & Denny [37] for

Reynolds numbers of 3200 and i0000. If sufficiently fine

grids are used, it is expected that the strength of the

primary vortex will increase and the sizes of upper-right

and upper-left secondary vortices will decrease. Besides,

i
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the tertiary vortex driven by the upper-rlght secondary

vortex may disappear or at least shrink in size. One may

conclude that with increasing Reynolds number, the

upper-right secondary vortex starts to shrink around Re =

2000, while the upper-left secondary vortex begins to

shrink at a higher Reynolds number around 5000. It is

also expected that the size of the lower-left secondary

vortex will decrease for much higher Reynolds numbers.

Benjamin 6 Denny [37] made a differen% conclusion that

the sizes of secondary vortices will continue to increase

with increasing Reynolds number with _ series of

counterrotating vortices occupied the two upper corners.

This conclusion seems to be unreasonable because the

continuous enlarging of secondary vortices eventually

would result in a large separation bulb near the top wall.

It is noted that the movement of vortex center for

Re : 5000 during starting phase is somewhat different from

those for Re = I000 and 2000. Unlike the solutions for

Re : 1000 and 2000, the locus of the vortex center for

Re : 5000 makes a curl figure "_' motion. The vortex center

begins to move from lower-right corner to a position

higher than the geometric center around t : i0 (Fig. 18(e))

and continue to move leftward. After passing a peak, the

vortex center is convected downward to approximately at

mid-height of the cavity as that shown at t : 20 before
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it reaches the steady-state position slightly below the

cavity center. For Re = 1000 and 2000, the locus of the

vortex center simply moves from the lower-right corner to

the steady and peak position below the cavity center.

This difference in movement of vortex center may be due to

the fact that at the initial stage of development for

high Reynolds number flows, the top and left walls have

little effect on the development of primary vortex. It is

expected that this behavior would persist at higher

Reynolds numbers.

As mentioned before, the steady-state solution can

be obtained much more efficiently by relaxing the

convergence criterion at each time step and by employing

larger time increments in the numerical calculation.

On the other hand, a better-estimated initial profile

can reduce the computational time needed for calculatinz

steady-state solutions. A series of steady-state solutions

thus obtained are shown in Figures 20 thr_l 23 for Re = i00,

400, 1000 and 2000 respectively. In all cases, the

first-order vorticity boundary condition (VII-4a) and

uniform meshs are used. A higher order correction term

of non-conservative form of

8
5

fp=_Re i:iZci{Cui-uP>_xIi ÷ _vi-vP>_yIi} cvzl-7_
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is employed in these calculations. C i are FA coefficients

for steady convective transport equations. Considerable

saving in computational time are resulted in each case.

For example, the steady-state solution for Re = 1000 can

be obtained with a time increment of 0.4 for first 50 time

steps and a time increment of 0.5 for another 40 time

steps. The optimal time increment for fast, convergent

result can be determined easily by running the program

for a few time steps. It is noted that the shape of the

upper-right secondary vortex given in Fig. 23 for Re : 2000

differs slightly from those (see Fig. 16(i)) obtained with

a higher order correction term tabulated in conservative

form (V-5). This small discrepancy may be due to the

relatively coarse grid near the wall and non-conservative

higher order correction term used in Fig. 23.

Nevertheless, the global features of the numerical

results obtained by these two approachs (V-5) and (VIT-7)

t

are still in good agreements for both Re = I000 and 2000.

VII-2 Development of Vortex Street Behind a

Rectangular Block

In previous section, the 10-point FA formula for

unsteady two-dlmensional convective transport equation is

employed to solve the starting cavity flow problems for

Reynolds numbers from 100 to 5000. The steady-state
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solutions agree well with most of the calculations obtained

by other researchers while the transient solutions are also

provided. Due to the lack of the reliable experimental

and other numerical or theoretical works, the accuracy

of the transient solutions can not be rigorously verified.

It is thus desired to test the present FA formulation for

some other problems with comparable transient behaviors.

In this section, the development of vortex street behind

a rectangular block is chosen for this @urpose.

For easy comparison with the results obtained by

Fromm E Harlow [51], a rectangular block of height L

and width L/4 as shown in Fig. 24 is chosen for the test.

A calculation domain of 26Lx6L is used to simulate the

infinite extent of the region. The Reynolds number is

defined by UoL/u , where U 0 is the uniform oncoming

velocity. The block is located at a distance 2L from

upstream. A nonuniform grid of 0.5 (3 nodes), 0.25 (14

nodes), 0.5 (i0 nodes) and 0.8 (20 nodes) is used in the

x-direction for the cases considered, while uniform grid

of 0.25 is used in the y-direction for Re : 10, 50, 100

and 200, and a nonuniform grid of 0.5 (2 nodes), 0.125

(32 nodes) and 0.5 (2 nodes) is used for Re = 500.

From the experience obtained in solving the starting

cavity flow problems, first-order vorticity boundary

condition (VII-4a) derived from impermeable and no-slip
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boundary conditions is used along the boundary of the

rectangular block while the stmeamfunction is set zero on

the walls. As to the outer boundary, the boundary

conditions are specified as _ : 0, _ = -3; _ = 0, _ = 3

and _ : 0, _ = y on bottom, top and upstream boura_my, while

downstream boundary conditions are specified as _x = 0

and _x = 0. For all calculations, a zero initial vorticity

field is specified at t=0, a time increment of 0.5 is used

for the first 40 (Re = i00, 200 and 500) or 60 (Re = i0 and

50) time steps, after that the time increment is reduced

to 0.2 to obtain accurate transient solutions. The

convergence criterion at each time step is specified as

A_ < 10 -5 and A_ < lo -5 for all field points between two

internal iterations.

From the present FA calculation, both steady and

unsteady separation flows behind the rectangular block

are predicted. It should be remarked that the boundary

conditionsposed for the problem do not stipulate the

symmetry condition at the plane of geometric symmetry,

therefore the prediction does produce the asymmetric

flow pattern such as vortex shedding phenomenon. It is

found that the flow pattern at the initial phase of flow

is symmetric, however, except for Re = I0, the flow pattern

becomes asymmetric and oscillatory. For example, at Re :

500, the separation bulb (see Fig. 25) which is initially
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symmetric begins to show asymmetric pattern around t : 20

and eventually the FA calculation predicts vortex

shedding. This behavior is quite different from the

calculations made by Fromm 6 Harlow [51]. They reported

that an artificial perturbation on vorticity at 3 mesh

points just in front of the rectangular block is needed

to start the vortex shedding Drocess. In order to clarify

this point, a stringent criterion of A¢ < 10 -6 and A_ < 10 -6

is used to calculate the FA numerical solution for

Re = 500 for first g0 time steps to see if the vortex

shedding can be surpressed in the present calculation.

However, asymmetric flow pattern still occurs as that

shown in Fig. 25 at t : 20 although the symmetric pattern

persists a little longer. It is thus expected that even

if a very strict convergence criterion is used, the

computer round-off error would still be sufficient to

trigger the vortex shedding after a certain time and

destroy the initially developed symmetric pattern. In

this study, the effect of artificial perturbation is also

investigated for two selected cases of Re : 10 and 500 to

examine the difference it may bring. In the case of Re =

500, the vorticities at two points upstream of the

rectangular block are artificially increased by about

20% of its value at t : 20. In the subsequent time of

calculation, this vorticity disturbance convected
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downstream while simltaneously diffused away. However,

the influence diminishes very rapidly. After 20 time

increment of 0.2 at t : 24, the flow pattern as shown in

Fig. 26 is almost the same as the one obtained without

artificial disturbance. On the other hand, for the case

of Re = i0 (Fig. 27), even if a large artificial vorticity

perturbation of about 80% of its value is introduced at

the same upstream nodes at t = 30, the steady-state

pattern recovered very soon in about 10 time steps or at

t = 35. In both cases, the artificial perturbation dies

out in less than 20 time steps. Thus, the stability of

the finite analytic transient numerical solutions is

demonstrated. It is concluded that the upsteady flow

pattern of vortex street is an expected pattern for

high Reynolds numbers of 0(102 ) to 0(103), while the

symmetric f]ow pattern is only stable for low Reynolds

numbers.

A typical streamline pattern for vortex shedding

process can be seen clearly in Fig. 28 for Re = i00 where

the flow patterns are shown for every quarter period.

At t : 43.6, the upper eddy has accumulated sufficient

vorticity generated by the flow over the block and is

about to leave the rectangular block while the lower

eddy _ust begins to absorb the voeticity generated by

the flow over the lower side of the block. Quarter

148
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period later, the upper eddy leaves the block because the

eddy has grown sufficiently large in size to block the

flow on top of the rectangular block. As the upper eddy

moves downstream, the lower eddy continues to grow and

eventually forms a closed bulb. Around t = hG.8, the upper

eddy has already shedded downstream and the lower eddy

grows to its maximum strength and starts to leave the

block. In the meantime, the accumulation of vorticity at

the upper corner leads to the birth of a second upper

eddy. The second upper eddy then continues to gcow as

that shown in Fig. 28(d). At a later time of t = 50_ the

second upper eddy reaches its maximum strength and

begins the next cycle of vortex shedding process. The

time period for this vortex shedding process is about

6.4. The corresponding Strouhal number is 0.156, which

agrees favorably with the experimental measurement [53]

of 0.165 based on a similar block with sharp edges.

Furthermore, the streamlines pattern at t = 45.2 and _8.4

(lagged by half period) exhibit a very similar pattern

as the experimental result shown in Prandtl _ Tietjens

[5_] for Re = 250. Thus, the adequateness of the present

unsteady 10-point FA formula _n predicting the unsteady

two-dimensional fluid flow problems is demonstrated. It is

noted that, due to the convection, the eddies are carried

downstream. Therefore, eddies other than relatively

L



L

ORIQ NALPAGEIS i so
OF POORQUALITy

stationary one such as those immediately behind the block

can not be visualized on plot of streamlines. For example,

in streamline plots, there are only two closed separation

bulbs in Fig. 28(b) for t = 45.2, and even less ciosed

streamlines in Fig. 28(h) for t = 55.8 are observed.

In order to visualize the eddies that are convected

downstream, one may subtract the free stream velocity

from the streamlines configuration. The rest streamlines

thus obtained are equivalent to the stream pattern

observed by an observer on the rest ambient fluid when

a rectangular block moves with uniform velocity through

it. In Fig. 29, the downstream eddies can be easily seen

in the rest streamlines configurations after the vortex

shedding process occurs. The corresponding vorticity

contours are shown in Fig. 29 for comparison. It is seen

that at each time step, the regions of high voPticity

concentration coincide with the center of eddies shown

in the corresponding rest streamlines patterns. One thus

may conclude that in the vortex shedding process, the

vorticity produced by the block is first accumulated in

the eddies formed behind the block and then carried

downstream by the eddies when they are shedded. The

vorticity is then diffused away rapidly. Similar vortex

shedding processes are also predicted in the cases of

Re : 50 and 200. The streamlines, rest streamlines and

I

I ]
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vorticity contours are plotted in Figures 30 and 31 for

Re = 50 and 200 respectively. The corresponding Strouhal

numbers are 0.14 and 0.135, which also follow the correct

trend of the experiment [53] that gives approximately

0.140 and 0.155 for Re : 50 and 200 respectively.

For a higher Reynolds number of 500, the FA solution

of streamlines is shown in Fig. 32. Which shows that

vortex are shedded alternatively. However, eddies are

not easy to observe from Fig. 32. Thus, the rest

streamlines are plotted in Fig. 33 to capture the vortex

shedding process. The vorticity contours shown in Fig. 34

exhibit a higher concentration and a slimer shape than

those obtained at lower Reynolds numbers. Experiments

of Blevins [53] show that the Strouhal numbers for various

non-circular section obstacles at high Reynolds numbers

lie between 0.12 and 0.15. In the present study, the

Strouhal number for Re = 500 is estimated to be about 0.13,

which agrees quite well with the experimental data [53]

although at higher Reynolds number of 500_ the flow may

be in the transition region.

It should be remarked here that all of the calculations

performed in this section are based on relatively coarse

nonuniform grids (_8x25 for Re : I0, 50, i00, 200 and

_8x37 for Re : 500) with fairly large time increments of

0.2 and 0,5. Yet accurate and stable solutions are
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obtained. On the other hand, the dimensionless time

increment used by Fromm £ Harlow [51] is restricted to a

much smaller increment of about 0.03. Smith g Berbbia [52]

also used a small time increment of 0.03 for Re = 100, and

even smaller time increments are needed for hiEher Reynolds

numbers, it should be remarked here also that coarser

grids may indeed be used in predicting FA solution for

Re : 500 if the calculation of FA coefficients for large

grid sizes that requires the summation of large exponential

functions can be made by the present computer facility.

As mentioned before, there is only one series summation

term E 2 (or E_) needed to be evaluated numerically. In

most of the cases considered in Sections VII-I and VII-2,

accurate FA coefficients can be obtained with i0 to 15

terms summation of Fourier series containing exponential

function, exp(s), of order s _100. However_ for some

combinations of A, B, h and k, accurate series summation

of E 2 (or E_) can not be obtained (i.e., s > i00) with

present generation of computer due to the computer

round-off error. Thus, large mesh sizes are not employ_:d

in the present calculation, so that the difficulty of

evaluating FA coefficients is avoided. It is possible to

replace F 2 or E_ by some approximate analytic expression,

so that all calculations of series summation can be

eliminated and the limitation in numerical evaluation of
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FA coefficients for large Ah, Bk etc. can then be removed.

In the preliminary study, an approximated expression of

eq(III-51) based on a collocation formulation is given _r,

Chen & Chen [55] for an equal grid spacing local element

of h E = hW : h N : h G : h as

1
¢p"

1 +-C O
T

--[ GI(e-AhcE C + eAhCwc + e-BhcN C + eBh¢s C) +

G2(e-Ah-BhcN E + eAh-Bh¢N WJ + e-Ah+Bh¢s E"+ eAh+Bh¢sw)

+ R Cp n-ICp - Cef_] (VII-8)

where

G 1 :
Bh sinhAh coshBh-Ah sinhAh coshBh

2(Bh cosh2Bh sinhAh- Ah Cosh2Ah sinhBh)

and

G2 : _ Ah sinhBh-Bh sinhAh
_(Bh cosh2Bh sinhAh-Ah cosh2Ah sinhBh)

coshAh - coshBh
Cp : 2<Ah coshAh cothAh-B_' _osh_h co%hBh)

It should be remarked that even though eq(VII-8) is

only an approximate expression, the FA coefficients based

on eq(VII-8) will recover the Greenspan formula [17] in

pure diffusion case (A = B : O) and approach the same

asymptotic values as those given in FA formula (III-51) for

the convective dominated cases. If eq(VII-8) is used in
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the calculation for FA coefficients of equal grid spacing,

the difficulty and restriction in evaluating E2 (or E_)

is then resolved.

At the time of writing this thesis, Cheng [56] has

proposed another approximation formula for the summation

term E 2 as

where

E2 _ 1 [ A(I Bk coshBk) + B2h sinhAh],
4ABh2sinhBk coshAh - s'inhBk coshAh--- "

sinh_ik

BlCOShPl k (VII-9)

Therefore, the difficuly and restriction in evaluating

E2 for uniform and nonuniform grid spacing local elements

can be approximately circumvented. Currently, further

study in evaluating E 2 without a series summation

applicable to nonuniform grid spacing local element is

under investigation.

VII-3 Two-Dimensional Startin_ Cavity Flow in
Primitive Variable Formulation

As mentioned earlier in Chapter V, the

vorticity-streamfunction formulation suffers from some

disadvantages when applied to turbulent or 3D fluid
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flow problems. Thus, a formulation using the so-called

primitive variables, i.e., velocities and pressure becomes

attractive for these complicate fluid flow problems.

However, additional efforts should be devoted to resolve

the pressure-velocity coupling one way or another. In past

two decades_ several numerical schemes [22-28], which are

capable of solving the pressure-velocity coupling problem

were developed. Again, the driven cavity flow problem is

often chosen to test these numerical schemes.

Ghia, Hankey 6 Hodge [47] employed a totally central

di[ference scheme to solve the driven cavity flow in

primitive variable formulation. In order to avoid the

nonlinear instability resulted from the pressure-velocity

coupling, the dilatation term in Possion equation (V-6)

for pressure is kept. The numerical solutions for Re = i00,

400 and I000 were obtained by both uniform and nonuniform

grids ranking from 15x15 to 57x57. Goda [25] employed a

numerical algorithm based on a simple variant of Chorin

method [23] to solve the two-dimensional driven cavity

flow in terms of primitive variables. The central

difference scheme was used to discretize the governing

equations in a staggered grid coordinate system. An

auxillary velocity field introduced by Chorin [23] was

invoked to resolve the pressure-velocity coupling problem.

Rather complicate boundary conditions for pressure and
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auxillary velocity field are needed to keep the numerical

accuracy. Bercovier & Engleman [48] used a finite element

method of penalization type to solve the two-dimensional

cavity flow problem. In their calculations_ rather coarse

grid were used to obtain the numerical solution for Re = 0,

100, 400 and 1000. The results exhibit the same features

as those obtained by Ghia et al. [47] and Goda [25].

However, oscillations in velocity field were encountered

near the wall. Singh [22] employed the finite analytic

method developed by Chen eta]. [5,6] to solve the same

problem for Re = 100, 400 and 800. A momentum-averaging

scheme is used to resolve the pressure-velocity coupling,

so that a continuity-satisfied velocity field can be

obtained.

In the present calculation of FA solution, the

starting cavity flows for Re = 100, 400 and 1000 are

solved in a staggered grid coordinate system using uniform

meshs ranging from 21×21 to 41×41. In order to apply the

no-slip boundary conditions exactly on the moving and

stationary walls, control volumes of zero thickness are

chosen along the wall (see Fig. 8). The 10-point FA formula

for unsteady two-dimensional convective transport equation

based on nonuniform grid local element is employed to

discretize the momentum equations. A pseudovelocity field

described in eq(V-9) of Section V-2 is then introduced
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so that the pressure field can be obtained via the equation

of continuity. The guessed flow field is corrected by

velocity-correction formulas (V-14a) - (V-14c) to obtain

a continuity-satisfied flow field [ii]. Detailed numerical

procedures are given previously in Section V-2.

In order to obtain the steady-state solutions more

rapidly, the convergence criterion for intermediate time

steps are relaxed. Furthermore, the convection coefficients

2A and 2B are evaluated in terms of the velocities of

previous time steps, so that the computational time needed

can be minimized. In all calculations, zero initial

velocity field is specified at the beginning, time

increments ranging from 0.i to 0.6 are used to obtain

the steady-state solutions.

In the present algorithm, the velocity field governed

by equations (III-23) and (III-24) satisfies the equation

of continuity (III-22) at each iteration or each time step

after employing the velocity-correction formulas (V-14a) -

(V-lqc). Thus, the corresponding streamfunction can be

easily obtained by simple integration of the velocity

field alon_ suitable paths. In this study, the streamfunction

at any field point is obtained by integratin E the

horizontal velocity u alon E constant x lines. The steady

streamfurctions thus obtained are shown in Fi E . 35 for

Re : i00, 400 and i000 respectively. The results shown in
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Figs. 35(a) thru 35(d) agree well with those FA solutions

obtained by the vorticity-streamfunction formluation

given in Figures 12, 14, 20 and 21. The magnitude and

direction of the velocity field are shown in Figs 36(a)

thru 36(d) in terms of flow vectors for Re = 100, 400 and

1000 respectively. It can be seen that the vortex center

moves gradually toward the geometric center as Reynolds

number increases. Moreover, the velocity field obtained

in the 21×21 or 41×41 uniform grids for Re = I000 in Figs.

36(c) or 36(d) shows a boundary layer phenomenon near

the top wall. It is also noted that, unlike the

vorticity-streamfunction formulation, the sizes of the

secondary vortices are relatively insensitive to the

mesh size used in the primitive variable formulation.

This is due to the fact that the no-slip and impermeable

boundary conditions are exactly satisfied in the primitive

variable formulation, while the vorticity boundary

conditions are strongly dependent on the grid sizes

employed near the wall. In additional to the streamlines

and flow vector profiles, the pressure field which is not

calculated in vorticity-streamfunction formulation is

given in Fig. 37. The results are also in good agreement

with those obtained by Burggraf [31], Singh [22] and Ghia

et al. [_7].
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In this study, the FA numerical solutions based o_

nonuniform grids are also obtained for Re = _00 and 1000.

In general, some improvement of numerical results are

anticipated when computed in nonuniform grids. However,

negligible improvement is found in using nonuniform grids

when same numbers of total grid points are employed. One

may wonder why the calculation with nonuniform grids does

not differ from that with uniform grids; one possible

reason may be due to the loss of accuracy in the evaluation

of pressure gradient terms which should be encountered

for all numerical schemes formulated in staggered grids

when nonuniform grids are used. It can be seen from

eq(V-Sa) that the pressure gradient term is only

first-order accurate if the point e is not located at the

midway of point EC and point P. The attempt to obtain a

second-order accurate representation of pressure gradient

term would lead to more complicate governing equation

for pressure and thus offset the advantages gained in

using nonuniform grids. In future study, it is proposed,

when situations allow, to use the regular grid instead of

the staggered grid coordinate system, so that the pressure

gradient which forms a part of the source term for a

momentum equation can be accurately evaluated.
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In this chapter_ the 28-point FA formula for unsteady

three-dimensional convective transport equation is employed

to solve a simple three-dimensional cavity flew driven by

a moving wall. Due to its simple geometry and boundary

conditions, the three-dimensional cavity flow is often

chosen to test the new numerical schemes for steady or

unsteady Navier-Stokes equations. Takami _ Kuwahara [26]

employed a modified Chorin method [23] but using the

acceleration instead of velocity field as the dependent

variable to solve the three-dimensional cavity flow

problem for Re = 0, i00 and 400. All of the results are

calculated in a staggered grid coordinate system using

mesh size of 0.05. Small time increment of 0.025 is used

for Re = 100 and 400 while a smaller time increment of

0.02 is used for Re : 0. Goda [25] used a technique which

is also based on a simple variant of Chorin's method

to solve the same cavity flow problem for Re = 100 and

400. The numerical solutions are obtained in a staggered

grid coordinate system of equal grid size of 0.05. The

results in general agree with those reported by Takami &
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Kuwab:_ra [26]. In both cases, the pressure field is solved

directly via the equation of continuity, thus only four

equations are needed to obtain the velocity and pressure

fields. On the other hand, the vorticity-based formulations

may also be employed. For example, Vahl Davis _ Mallinson

[32] used the vorticity-vector potential formulation to

solve the three-dimensional cavity flow problem at Re :

100 and 400 for aspect ratio ranging from 1 to 5 to

study the effect of three-dlmensionality on the

two-dimensional model. Dennis et. al [21] employed a

vorticity-velocity formulation to study the cubic cavity

flow problem up to Reynolds number of 100, but the

attempt for Re = 400 was not succeeded. Agarawal [57]

used the same vorticity-velocity formulation, but instead

of diagonal dominated second-order finite difference

scheme, a third-order accurate upwind scheme is employed

to solve the steady cavity flow problem for Re = 0, 100

and 400. Three different mesh sizes of 0.i, 0.0625 and

0.05 were used to obtain the numerical solutions. The

results agree quite well with those reported by Takami

Kuwahara [26] and Goda [25].

In the present study, the primitive variable

formulation described in Section V-2 is adopted to

formulate t)_e three-dimensional starting cavity flow

problems in terms of u, v, w and p. The cubic cavity of
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unit length shown in Fi E . 38 is driven by the bottom wall

with unit normalized velocity in the positive x-direction.

Because of the symmetry with respect to the plane y = 0.5,

only half of the flow domain needed to be considered. The

flow domain is divided into many rectangular control

volumes and a staggered grid arrangement described in

Section V-2 is employed. In other word, the pressure is

calculated at the center of the control volume, while the

velocities u, v and w are calculated at staggered locations

across the control surfaces. Furthermore, control volumes

of zero thickness are chosen along the wall, so that the

no-slip condition can also be applied exactly on the

moving and stationary walls. Symmetric boundary conditions

at y : 0.5 are satisfied by equating the velocities u and

w at plane y = g (1 + Ay) to those at plane y = (1- Ay).

The boundary condition for pressure is not needed since

pressure is needed only to compute velocity but the

impermeable boundary conditions prescribe the zero normal

veIocities already on the boundaries,

Following the numerical procedures described in

Sec. g-2, the starting cavity flows of Reynolds numbers

of 100 and 400 are solved using uniform mesh sizes of

Ax = Ay = Az = 0.I and Ax = Az = 0.0625, Ay = 0.125 respectively.

Due to the limited computer storage available, no attempt

was made to calculate the results in finer mesh sizes
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or higher Reynolds numbers. A time increment of 0.3 is

used in both cases, while the steady-state solutions are

achieved in 50 time steps.

The steady-state x-component velocity profiles on the

plane x = 0.5 are shown in Figs. 39(a) and 39(b) for Re =

i00 and _00. The results in general agree well with

those obtained by Goda [25], Takami _ Kuwahara L263 and

Agarwal [57], even though coarser grids of 0.I and 0.0625

are used in the present study. For the case of Re : 100,

the x-component velocity profile at central part y = 0.45

is almost two-dimensional. However, the maximum velocity

in y-direction, which occurs near the vortex center in

xz plane, still has a magnitude of 0.025. As the Reynolds

number increases to 400, the magnitude of the secondary

flow increases, and the x-component velocity profile

at y = 0.4375 differs significantly from that at y = 0.3125.

It indicates that the effect of the side walls at y = 0

and y : 1 on the total flow becomes important, and the

flow pattern at y : 0.5 thus differs significantly from

the two-dimensional pattern at the same Reynolds number.

The finite analytic solution also agrees well with the

study of Vahl Davis & Mallinson [32], where the effect

of side walls at different aspect ratio is repomted.

Since the scalar streamfunction does not exist in

thmee-dimensional flows, it is betteP to examine the
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flow structure in the xz plane by means of the flow

vectors so that a comparison with two-dimensional cavity

flow can be meaningfully made. Figs. 40 and 41 show the

1
profiles of flow vectors in the plane y = _Ay and y =

! (i - Ay) for Reynolds numbers of I00 and 400 respectively.2

It can be seen that the magnitude of the flow vectors

1

at y = _ Ay is greatly affected by the presence of the side

walls in y-direction and the locations of the vortex

centers are closer to the moving wall than those at y =

1
7 (I- Ay). In additional to the profiles of flow vectors_

the corresponding magnitude of the velocity components

1 1

u and w at y = _ Ay and _ (1- Ay) for Reynolds number 400

are shown in Figures 42 and 43 respectively. However_ the

flow direction and magnitude can only be completely

described until the velocity normal to xz plane is

prescribed. Thus, the secondary flow for Re = 400 in

y-direction is given in Figs. 44(a) thru 44(c), It can be

seen that there is a tendency for the flow around the

vortex center to go toward the center of the cubic cavity.

On the other hand, except for part of the right wall_

the flow near the boundaries goes toward the side walls

at y = 0 and y : I. All of the velocity contours agree

fairly well with those obtained by Agarwal [57] and

Goda [25].
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Due to the limited computer storage presently

available at the University of Iowa computer center, no

attempt was made to calculate the numerical results for

Reynolds numbers higher than 400. However, from the

finite analytic numerical solutions for Re : 100 and 400,

it may still be concluded that the pressure gradient in

y-direction and the secondary flow increase with

increasing Reynolds number. Thus results in a significant

reduction of the strength of primary vortex when

compared with two-dimensional cases. Therefore, if one

desire to obtain an approximately two-dimensional cavity

flow experimentally or numerically from a three-dimensional

set up, it is suggested that the aspect ratio of the

three-dimensional cavity should increase with increasing

Reynold numbers so that the two-dimensional assumption

can be insured. However, viscous effect ol the side walls

may decrease for very large Reynolds numbers.

It should be remarked here that in cited previous

works, relatively small time increments were needed for

most of the unsteady numerical schemes so that stable

numerical solutions can be obtained. For example, the

time increment used by Goda [25] is restricted by

T < h/lUmaxl. Even smaller time increments of 0.02 and
v _

0.025 are used in Takami & Kuwahara [26] in solving

three-dimensional cavity flow problems. On the other hand,
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a large time increment of 0.3 was used in the finite

analytic method, while • even larger time increment is

still possible. Thus, the stability of the present FA

method is also established in the three-dimensional

calculation. Moreover_ the fact that the 28-point FA

formula provides all-positive coefficients and desired

upwind shift gurantees that physical realistic numerical

solution with minimum false numerical diffusion can be

obtained as long as the problem is well-posed. There is,

however, some improvements can still be made in the

present FA method. It is noted that the use of staggered

grid coordinate requires three sets of FA coefficients

for u_ v and w respectively and the evaluation of

pressure gradient is only of first-order accuracy when

nonuniform mesh is employed. The use of regular grid

instead of staggered can not only reduce the computer

storage and computational time needed but also provide

accurate higher order evaluation of pressure gradient

terms. It is also noted that there are four series

summation terms needed to be evaluated numerically. For

high Reynolds numbers, the evaluation of these summation

terms could be very time-consuming or even diverged due

to the round-off error in the present day computers. If

the series summation terms are replaced by some

approximation functions, then the limitation in evaluating
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FA coefficients can be removed. Also, the computational

time is significantly reduced.



ORIGINAL PAGE 19

OF POOR QUALITY

168

CHAPTER IX

CONCLUSIONS

The finite analytic solutions for unsteady ID, 2D

and 3D convective transport equations are derived in both

uniform and nonuniform grid spacing local elements. When

the present finite analytic solution is compared with the

finite analytic solution obtained by Chen et al. [5,6]

for steady two-dimensional case, significant improvements

are seen due to the better boundary approximations and the

better linearization scheme for convective terms. The

improved 10-point FA formula for unsteady two-dimensional

convective transport equation is employed to study the

two-dimensional starting cavity flows and vortex shedding

processes behind a rectangular block. The finite analytic

numerical solutions for the driven cavity flow are obtained

using both vorticity-streamfunction and primitive variable

formulations. In vorticity-streamfunction formulation,

contour plots of streamfunction and vorticity at

steady-state are provided for Reynolds number of 100, 400,

I000, 2000 and 5000. Transient solutions of the starting

cavity flow are also given in the cases of Re = i000, 7000

and 5000. In primitive variable formulation, the
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streamlines, pressure contours and flow vector profiles

are plotted for Re = 100, 400 and 1000. The results agree

well with those obtained in vorticity-streamfunction

formulation. The vortex shedding phenomenon is then

studied by investigating the transient solutions of uniform

flow passing a rectangular block of height L and width

L/4. The numerical solutions for streamlines and vorticity

contours are given for Reynolds numbers of I0, 50, i00,

200 and 500. Except for Re = 10_ vortex street developments

are observed. The flow patterns and the corresponding

Strouhal numbers obtained from finite analytic method

are consistent with theoretical and experimental studies.

In three-dimensional case_ the 28-point FA formula

formulated in terms of the primitive variables is employed

to solve a three-dimensional cubic cavity flow problem.

Flow vector profiles and contour plots of velocities at

several cross-sections are given. The numer$cal solutions

show that the presence of the side walls reduce the

strength of the primary vortex when compared with the

two-dimensional square cavity flow. Furthermore, this

effect becomes significant for Reynolds nu:ber of _00.

In all of the test problems considered, the finite

analytic numerical solutions are shown to be accurate and

stable. Significant results arc summarized in the

following.
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(i) In steady two-dimensional case, the FA solution

based on exponential and linear boundary approxima-

tions does give all-positive FA coefficients, which

is more reasonable and requires less computational

time than those obtained by Chen etal. [5,6]. Thus,

the extension to unsteady three-dimensional cases

becomes practical.

(2) The 28-point FA formula for unsteady 3D convective

transport equation derived in a nonuniform grid

spacing local element gives physically realistic

all-positive coefficients and exhibits a desired

upwind shift. Furthermore, the false numerical

diffusion is minimized because of the inclusion of

all corner points.

(3) Higher order corrections for the convective terms

in Navier-Stokes equations are considered in this

dissertation. It significantly improves the

linearization scheme and the accuracy of the FA

solutions.

(_) The equivalent under-relaxation factor for

steady-state iterative method can be derived from

the FA solution for unsteady flow. It is found that

the under-relaxation factor for steady Navier-Stokes

equations varies from element to element, and make

the FA numerical solution more stable than the

I
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solution obtained with constant under-relaxation

factor in the steady-state iterative method.

(5) For unsteady fluid [low problems, large time incre-

ment that is several times of mesh size can be often

used to obtain the FA solution for transient

problems. Even lar_er time _ncrements can be employed

in the FA method to calculate steady problems. Thus,

the stability and computational efficiency of the

present FA method is demonstrated.

There are, however, still some improvements in the

present FA method that can be made in future study. Firstly,

the series summation terms required in evaluating the FA

coefficients can be replaced by some approximation functions

so that the limitation in numerical evaluation of FA

coefficients can be removed, and the computational time

can be further reduced. Secondly, for convection dominated

cases where the downstream FA coefficients a_e practically

zero, it is possible to improve the accuracy in these cases

by taking more upstream nodal points into account in

deriving the FA coefficients. Thirdly, fo_ problems where

recirculating flows occur in only part of the domain, it

is instructive to incorporate the simple exponential scheme

or power-law scheme [ii] in the finite analytic formulation,

so that the accurate solutions can be obtained mope

economically.
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10 -2 I0 "I 1 i0 102 108

• ..... , .... 'L ,_t .......

-8
0.5000 0.4975 0.4722 0.2555 0.0488 0.0050 i0

0.5000 0.4875 0.3866 0.0347 10 -10 i0 "87 0

10 -7 0.0100 0.1005 0.5997 0.9040 0.9900 1.000

10 -7 0.0098 0.0823 0.0812 10 -9 10 -87 0

-10 -8 -0.0025 -0.0229 -0.0053 0.0449 0.0050 10 -8

-10 -8 -0.0024 -0.0187 -0.0013 -0.0006 -10 -14 0

10 -17 i0 -II 0.0345 0,0028 10 -14 0

Table (i) FA coefficients for unsteady ID convective

transport equation with second-order polynomial

initial and boundary approximation for Courant

number C O = 1

Ah 10 -7 10 -2 i0 -I 1 i0 102 108

,d , , _ i

CNW 0.1093 0.Ii04 0.1206 0.2566 0.8555 0.9851 1.000

CNE 0.1093 0.1082 0.0988 0.0347 10 -9 10 -87 0

CWC 0.3251 0.3284 003579 0.5997 0.1890 0.0199 10 -8

CEC 0.3251 0.3219 0.2930 0.0812 10 "10 10 -89 0

CSW 0.0218 0.0220 0.0237 -0.0053 -0.0h45 -0.0h95 10 -8

CSE 0.0218 0.0216 0.0194 -0.0013 -10 "10 -10 -89 0

CSC 0.0875 0.0875 0.0867 0.0345 10 -43 0 0

Table (2) FA coefficients for unsteady ID convective

transport equation with second-order polynomial

initial and boundary approximation for BhL/2_=]

I
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Ah 0.001 0.01 0.i 1

CWC 0.27215 0.27461 0.29958 0.55647

CEC 0.27160 0.26917 0.24527 0.07531

CSW 0.18454 0.18620 0.20260 0.29523

CSC 0.08752 0.08751 0.08667 0.03303

CSE 0.18417 0.18251 0.16588 0.03996

i0 i00

0.95000 0.99500

10 .9 10 .87

0.05000 0.00500

10 -43 0

i0 -I0
-89

i0

Table (3) FA coefficients for unsteady ID convective

transport equation with exponential and linear
initial approximation and linear boundary

approximations for Bh2/2T = _.5

0

10

20

30

'_0

50

60

70

CWC CEC CSW CSC CSE

1.000000 10 -44 10 -8 0 10 .52

0.800000 I0 -44 0.200000 i0 -38 i0 "44

0. 600000 I0 -h4 0. 400000 10 "13 I0 -44

0.400003 10 -44 0.599991 0.000005 iO "44

0.203003 10 -_4 0.793244 0.003754 10 "44

0.056150 10 -45 0.887717 0.05611_i I0 "W_

0.007097 I0 "_6 0.820323 0.172581 i0 "W_

0.003887 i0 -h6 0.707623 0.288491 i0 "_W

Table (W) YA euefficients for unsteady ID convective

%_ansport equation with exponential and linear
Inltial approximation and linear boundary

approximations fo_ Ah: 50
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OWC

] .000000

0.833333

0.714286

0.625000

0.5555!_6

l 0. 500000

0. l_5454 !i

0.4!65b'/

Cl: C t._,,,
*; k,

-44
10 0

-44
I0 0.L66667

-qll
10 0,285"114

-_4
10 0.375000

-qq
10 0._44444

-h4
10 0. 500000

. IB11
10 0,545455

10 0.583333

1 '1q

T,_bl, • (!,) I'A co_(lici(,nts fof unsteady ID

eonvect ire, transpo_,t equation with
hybl, id !'A tol'nmlat ion for Ah : 50

[:C:tWC- N(,-( SC

('N!,:CNW:CsF:Csw

['AI:I, FASP FAPI,

0.20531 0, ?0'.;31 0.1673L_

G.0hl169 O.Oq46q 0.08766

'l',lhle (b CompaI, ison of FA coefficients for Laplace
equa_ ion (A : [_: O) ]n an _,qual g,'id spa('ing

local (.lemen! of hF. : hw : hN : h t; : h
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FAEI, }"ASP ?API,

0.52286 0.q36f10 0.52927

0.2385q 0.32q90 0.23212

0.00 "*,_-.. 0. 00002 0. 00323

0.00001 ,-O.r_q316 0.00001

i0 "9 ,10 -6 10 -7

175

Table (7) Comparison of FA coefficients for steady

2D convective transport equation in an

equal grid spacing local element of h E =

hw = h N = hS = h for Ah = Bh : 5

CWC

CNW = CSW

CNC = CSC

CNE = CSE

CE C

FAEL FASP FAPL

0.9800 0.9800 0.887q

0.0100 0.0100 0.0563

I0 -I] 0 10 -I]

i0 -h8 0 10 -25

I0 -hh 0 i0 "qq

Table (8) Comparison of FA coefficients for steady

2D convective transport equation in an

equal grid spacing local element of h E :

hW = h N : h s : h for Ah : 50, Bh : 0
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L

..........i;i............I
FAEL FASP FAPL

0.49969 0.3870q 0.q9950

0.00020 0.00038 0.00035

i0 -_4 10 -4 i0 -35

0.50010 0.7252? 0.50013

10 -g4 10 -g3 10 -q0

-22
10 -0.11256 0.00001

10 -26 10 -25 10 -23

10 -66 10 -25 10-35

Table (9) Comparison of FA coefficients for steady

2D convective transport equation in a

local element of hE = hW = h N = h e : h for
Ah = 50_ Bh = 25

hlk

CEC = CWC

CNC = CSC

CNC = CNW

!C =
' SE CSW

i 2 5 =

0.20531 O. 04q 51 0.000_0 0

0.20531 0.38613 0.h, 8002 0.5

0.0.q69 0.03q68 0.00979 0

0 .0qq69 0.03_68 0 .00979 0

Table (I0) FA coefficients for Laplace equation (A:B

: 0) in a local element of hE -h W = h and

h N : h_,,: k
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h/k 1 2 5 IO

CSW 0,30845 0.32953 0.186q8 0.09466

CSC 0.33396 0.55522 0.7931q 0.88735

CSE 0.00565 0.00011 I0 "I0 i0 -18

CWC 0.33396 0.09891 0.0224h i0 "6

CEC 0.00612 0.00003 i0 -II 10 -22

CNW 0.00565 0.00604 0.003h2 0.00173

CNC 0.00612 0.01017 0.01453 0.01625

CNE 0.00010 10 -6 10 -11 10 -20

177

Table (ii) FA coefficients for steady 2D convective

transport equation with exponential and
linear boundary approximation in a local

element of h E :%= h, hN = hS : k = 0.1 and

A : B : 20

Rh2/x

!

CSW

%c:%c
! :

CNW CSE

%c:%c

. t ......

0.00001 0.i 1 i0 i000

0.52282 0.52246 0.48587 0.29685 0.00678

0.23853 0.23673 0.22166 0.135_3 0.00309

0.00002 0.00002 0.00002 0.00002 10 "7

0.00001 0.00001 0.00001 0.00001 I0 -7

I0 "9 i0 -9 10 -9 I0 "9 i0 -II

0.00001 0.00756 0.07075 0.%3226 0.9870q

Table (12) FA coefficients for unsteady 2D convective

transport equation with exponen*ial and linear

boundary approximations (h : k, Ah = Bh = 5)
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Ch

CBC

CECB
:C =C

WCB SCB:CNCB

CSE B:CSWB:CNEB:CNW B

CEC = CWC : CNC --CSC

CNEc:CNwc:CSEC: CSWC

CEcT:CwcT =CNCT =CSC T

CNET:CNwT:CsET:CswT

CTC

0 1 i0

0.11363 0.25008 0.81127

0.02394 0.04966 0.04380

0.00386 0.00780 0.00257

0.11363 0.09_19 0.00072

0.02394 0.01960 O.UO008

0.02394 0.00672 I0 -I0

0.00386 0.00106 ]0 "11

0.11363 0.0338B 10 .9

I00

0.98010

0.00,495

0.00003

10 -16

I0-17

i0 -_9

10-92

I0- 8 '7

Table (]3) £A coefficients for steady 3D convective

transpomt equation in a local element of

equal grid spacing h E = hW = hN = h S = hm = h B
with Ah = Bh = 0 "

=h
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Bh = Ch

CSCB

CNCT

CBC : C$C

CNC : CTC

CEC : CWC

CNCB:CSE T

CSEB =CSW B

CNF.T= CNW T

cr.CB: CWCB: CSEC: CSWC

CN EB =CNNB: CSr,T =CSW T

CNEC =CECT: CNWC =CWC T

a

0 1 10 20 SO

0.0230 0.1044 0.5981 0.71Bl 0.82_4E

-18 -_5 -87
0.0239 0.00_9 I0 10 I0

0.1136 0.2106 0.1596 0.1191 0.0?85

0.1136 0.0285 10 -10 10 -18 i0 -W5

0.1136 0.0793 0.0001 10 "7 I0 -8

0.0239 0.01hl I0 "9 10 "18 I0 -hh

0.0039 0.0160 0.0?:'5 0.0167 0.0080

-19 -37 -89
0.0039 0.0003 I0 10 ]0

0.0239 0.0413 0.0069 0.0026 0.0006

-I0 -19 -4E
0.0039 0.0022 I0 10 10

0.0239 0.0056 I0 "11" I0 "20 10 -47

_ : : L _ Lit ± , _ , ,

i

Table (14) FA coeIfic:ients fo_ steady 3D convective

transport equation in an equal grid spacing
local element with Ah : 0
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i "l

Ah - qh -- Ch

CSWB

CS CIa-CwcB- CSWC

C<, . =• }B ('NwB:CswT

C'SC - CWC " ('BC

SEC -tNWC -c'S<'T

Cwcr: c'l:cB:CN(,B

CN[_B o,,I.T,LNWT

('t'C : _" : 'g(' tT("

NEC-L EcT-LNcT

t'NET

OAf(31NALPAQE I_
OF POOR QUALITY

0 S

0.00386? 0,255536

0.0239t_3 0,1632S_,

0,003852 0.000012

0,11363l 0.08U868

0.0239_3 0.000007

0.0239t_3 0.000007

-9
0,003862 10

0.113631 0.000004

0.0239q3 10 "I0

0.003862 I0 -I"

. ..... .

3O

0.539682

0.127785

10 -18

0,02565_

-18
10

lO -I_

l0 -35

i0 -19

-36
i0

I0
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T,lblc (15) FA eo,,f[icients fo,"
,,dnspot't equation

local elemenl of h E

steady 3D convective
in an equal grid spacing

= hW : h N --h S = hT = h B : h



X

Exact t _ ®

:t = T

FASP Jt : 2T

t__3T

FAEL & t =

Hybr id
FA t >_2T

Table (1_6)

Exact

FASP

FAEL

Hybrid
FA

Table
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0

1

1

i

t

I

I

0.2 0.4 0.6 0.8 1

0.800000 0.600030 O.gO0000 0.200000 tl

0.799968 0.59991_8 0.399952 0.199972 0

0.800016 0.600026 0.40002q 0.20001q 0

0.800000 0.600000 0._00000 0.200000 0

0.799953 0.599937 0.399945 0.199969 0

0.800000 0.600000 0.400000 0.200000 0

l,_rge time solutions for

transpomt equation, c : 0
c*= 0.0] and i = 1000

linear ID convective

(.heat. equation),

X

t - T

t=2T

t >3T

0 0.2 0.4 0.6 0.8 1

1 1.000000 1.000000 1.000000 1.000000 0

1 1.000000 0.999900 0.999800 0.999?00 0

1 1.000000 1.000050 1.000100 1.000149 0

1 1.000000 1.000000 1.000000 1.000000 0

t : _ 1 1.000000

t >2_ I 1.000000

0.999900 0.999800 0.999600 0

1.000000 1.000000 1.000000 0

(17) Large time solutions for linear ID convective

transport equation, c : I, _ : 0.001, h : 0.2
and r : 2000



%

<

ORIGINAL PAGE: IS
OF POOR QUALITY

182

X

Exact t ÷ _ 1
... .... : J . . •

t : "[

t=2T
FASP

t : 3_

,t > _T

FAEL & t = T

Hybrid t >_2
FA

0 0.2 0.4 0.6 0.8 i

00,999710 0.997567 0.981728 0.864704

0,999686 0.997444 0.981516 0.864451 0

0.999721 0.99"7624 0.981835 0.864830 0

1

1

1

1

1

1

0.9997'10 0.997566 0,981729 0.864704 0

0.999710 0.997566 0.981728 0.864704 0

0.999610 0.99.?868 0.981442 0.864385 0

0.999710 0.997567 0.981729 0,864704

Table (18) Large time solutions for linear ID convective•

transport equation, c : i_ _ = 0.01, h = 0.2
and T : 2000

x 0 0 .B 0.6

cl_ 1900 46.34 31.]5

Exact t + _ 1 0.999992 0.999798

FASP

,FAEL g

Hybrid
FA

t :

t:2_

t >3_

0.987886

1 0.999996 0.999957 0.988'787

1 1.000002 0.999973

1 1.000000 0.999968

0.999956

0.999967

0.8 0.9 1

23.46 20.88 18.8

0.875720 0
...... =

0.8797_3 0

t : _ i

t>2_ 1

0.988814 0.879772 0

0.988804 0.879762 0

0.999995

1.000000

0.988785 0.879741 0

0.988804 0.879761 0

Table (19) Large time solutions

transport equation.
and T : 1000

for linear ID convective

e/s : 19/(X + 0.01), h : 0.]
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Figure I : Domain and local element for finite analytic
formulations of unateady three-dimensional

convective transport equation.
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Figure 2 : Domain and local elements for finite analytic

formulations of unsteady one-dimensional

convective transport equation.
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Figure 3 : Domain and local element for finite analytic

formulations of unsteady two-dimensional

convective transport equation.
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(b) Local element of nonuniform grid s4>acing

Figure 4 : Local elements of uniform and nonuniform

grid spacing for two-dlmensional

convective transport equation.
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Figure 5 : Exact solution and approximation functions
for one-dimensional convective transport

equation, exact solution,

second-ordem polynomial approximation,
piecewlse-linear approximation.
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Figure 6 : Local elements of uniform and nonuniform

grid spacing for three-dimensional

convective transport equation.
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Figure 2U : Coo,'dinate _md boundary conditions for

vortex street development problem.
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(a) Streamlines at t = i0
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(b) Rest streamlines at t = i0

Figure 25 : Streamlines and rest streamlines for

vortex street development process

of Re : 500. A@ : 0.i.
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Figure 25 (cont'd)
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(b) Without- artificial perturbation

Figure 26 : Comparison of streamlines at t = 2_ for

vortex street development process of

Re : 500. A# = 0.i.
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(after perturbation)

Figure 27 : Comparison of streamlines for vortex
street development process of Re : i0.

A_ : 0.i.
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(b) t = 45.2

Figure 28 : 3treamlines for vortex street development
process of Re : 100. A_ = 0.i.
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(c) 1::= q.6.8

(d) 1: = =48.4

Figure 28 (cont'd)
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(e) t : 50.0
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(f) t : 53.2

Figure 28 (cont'd)
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(g) t = 56._

(h) t : 56.8

Figure 28 (cont'd)
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(b) Vorticity contours at t : I0

Figure 29 : Rest streamlines and vortieity contours

for vortex street development process

of Re : I00. A_ : 0.I, A_ : 0.5.
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(d) Vorticity contours at t : 20
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(a) Streamlines at t = 54.4
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(b) Streamlines at t : 58.0

Figure 30 : Streamlines, rest streamlines and vorticity

contours for vortex street development

process of Re = SO. A_ = 0.I, A_ = 0.5.
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(c) Rest streamlines at t : 54._
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(d) Rest sireamlines at t : 58.0

Figure 30 (cont'd)
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(f) Vorticity contours at t : 58.0

Figure 30 (cont'd)
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Figure 31 : Streamlines, rest streamlines and vorticity

contours for vortex street development

process of Re = 200. A_ = 0.I, A_ = 0.5.
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(c) Rest streamlines at t = 42.8

)-,

(d) Rest streamlines at t = q6.6

Figure 31 (cont'd)



ORIGINAL PAGE [-'_

OF POOR QUALITY

0.01.0 2.0 3.0 4.0 5.0 6.0 7.0 B.O 9.0 lO.OIl.O12.01_l.OI4,015.016.01?,Ot8.0

X

(e) Vorticity contours at t = 42.8

0.0 1.0 2.0 3.0 4.0 5.0 5.0 7.0 8,0 9.0 tO.Otl.Ot2.O 13.014.015.OI6.OtT.0t8.O

X

(f) Vorticity contours at t = 46.6

Figure 31 (cont'd)

I



ORIGINAL PAGE iS

OF POOR QUALIT_

249

(a) t = i0

(b) t = 20

Figure 32 : Streamlines for vortex street development
process of Re = 500. A_ = 0.i.
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(c) t = 24

(d) t = 26

Figure 32 (cont'd)
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(e) t = 28

(f) t : 40

Figure 32 (cont'd)
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(g) t = 44.4
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(h) t : 48.%

Figure 32 (cont'd)
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Figure 33 : Rest streamlines for vortex street

development process of Re = 500.
A_ : 0.i.
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(b) t = 20

Figure 34 : Vorticity contours for vortex street

development process of Re : 500. A( = 0.5.
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Figure 38 : Domain and control volume of cubic

cavity flow.
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APPENDIX A

FINITE ANALYTIC FORMULATION OF

UNSTEADY ONE-DIMENSIONAL

CONVECTIVE TRANSPORT EQUATION

Depending on boundary and initial functions selected

to approximate the boundary and initial conditions for the

chosen local element, several local analytic solutions of

the unsteady linear or linearized one-dimensional convective

transport equation

Cxx : 2ACx + Bet (A-.I)

can be obtained. In this appendix, three FA solutions are

derived in detail to illustrate the basic idea of the FA

method. Three solutions of eq(A-l) are distinguished by

the following formulations

(I) Eq(A-I) is solved with second-order polynomial

approximation for both initial and boundary

functions

2
¢(x,0) : aS + bsx + CsX

2
¢(-h,t): aW + bwt + Cwt

2
¢(h,t) : a E ÷ bet + cEt

I
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(2) Eq(A-I) is solved with exponential and linear

approximation for initial function, and linear

approximation for boundary functions.

_(x,0) = as(e2AX-l) + bsx ÷ cS

_(-h,t)= aW + bwt

_(h,t) : a E + bEt

(3) Eq(A-I) is solved with the unsteady term approxi-

mated by finite difference formula. This is a

hybrid FA-FD formula.

Details of three solutions are given below:

A-I Second-0rder Pol nomial Appmoximation for Initial and

Func_lons

In this case, the linear or linearized convective

transport equation (A-l) is solved in the local element

shown in Fig. 2(b).

For the convective transport equation (A-l) to be

well-posed, an initial and two boundary conditions must be

specified along the south, west and east boundaries

respectively. In terms of the nodal points available on

each boundary, second-order polynomials are employed to

approximate both the initial and boundary conditions, i.e.,
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2

¢(x,0) : a s + bsX + cSx

_[-h,t): aw + bwt + CW t2

2
_(h,t) : a E + bet + cEt

as : ¢SC' bs : _ (#$E - #SW )

. 1 _ 2¢ S )
CS - _ (¢SE + ¢SW C

aw : ¢SW'

1
bw : 3¢sw- %.w)

1
Cw : _ (¢sw + CNW - 2¢WC )

2T

1

aE : ¢SE' bE = 2-_ (4#EC - 3¢5E - CNE )

1
CE : _ (¢SE + CNE - 2¢EC )

2T

272

(A-la)

(A-ib)

(A-Ic)

With the introuetion of a change of variable

A 2

¢ : w eAX - _-- t (A-2)

The convective transport equation(A-l), initial condifion

(A-la) and boundary conditions (A-ib) and (A-ic) are

transformed to

w : B w (A-3)
xx t

w(x,0) : e-AX (a S + bsX + CsX2) : Oi(x) (A-3a)
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wC-h,t)

2

: eAh + _ t (a w + bwt + Cwt2) = #W(t )

A 2

w(h,t) = e -Ah + B-- t (a E + bE t + cEt2 ) = #E(t )

(A-3b)

(A-3c)

Under the method of superposition for linear equation

(A-2), this problem can be solved analytically by further

dividing it into two simpler problems

w = w I + w 2 CA-q)

with w I satisfies the homogeneous boundary conditions and

w 2 satisfies the zero initial condtion in the following

manner

and

w I : B
xx Wlt

Wl(X'0) : ¢I

Wl(-h,t): 0

Wl(h,t) : 0

(A-5)

w 2 : B
xx w2 t

w2(x,O) : 0

(x) (A-5a)

(A-Sb)

(A-Sc)

(A-6)

(A-6a)

(A-6b)

(A-6c)
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The solution for w I can be easily obtained by the

method of separation of v_riables. Assuming w I = X(x)T(t),

and substituting w I into eq(A-5), the variables ape

separated.

X" T' A2
: B-_-- = constant = -

The two resulting ordinary differential equations are

2
X" + A X = 0 (A-7)

2

T' + A_ T = 0 (A-8)

and the boundary conditions (A-Sb) and (A-5c) are trans-

formed to

X(-h) : 0

X(h) : 0
(A-9)

The two boundary conditions (A-9) can be used to find

the eigenvalues An . i.e.,

X = a n sinAn(X÷h)

nw
where An : 2-IT ' n : I, 2, 3, .......

and the corresponding solution for eq(A-8) will be

2
An

T-- b e--_ -t
n
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By the method of superposition, the general solution

for w I can thus be written as

A 2
n

Wl(X,t) = Z a e- -_- t sinAn(X+h)
n=l n

where the coefficients an, n = i, 2, 3, ..... can be

determined by applying the initial condition (A-S)

OO

Wl(X,0) = $i(x) = T
n=l

a n sin_n(X+h)

Invoking the orthogonality condition for sine ser_es, the

initial condition (A-5) gives

h

an = _i $ $I(X) sinAn(X+h) dx
-h

= asE0n • bsh Eln + csh2E2n

where

h
1

E0n = E I
-h

e'AX
sinXn(X+h) dx

(A-10)

_n h
[ eAh _ (-l)n e-Ah] (A-10a)

1 h

Eln = h-7./h xe-AX sinXn(X+h) dx
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2(Ah)(), h)

....n 2[e Ah . (.l)ne Ah]

_nh

(Ah) 2 + (_nh) _

[e Ah + (_l)ne "Ah] (A-lOb)

h
1

E2n = h--_- f-h

2 -Ax
X e sinXn(X+h) dx

h 2X h
n

{- 2 - _ h)'_]'2
(Ah) +(Xnh)" [(Ah) (_n

2

8(Ah) (_n h) [eAh ne_Ah]

[(Ah)2+( x h)2] 3} - (-I)
n

_(Ah)(_ h)
n Ah )ne-Ah_ _ [e + (-I ]

[(Ah) +(4 h)'] _
n

(A-lOc)

To solve (A-6),one note that the boundary conditions

(A-6b) and (A-6c) are prescribed functions of time. The

solution for the problem (A-6) can be deduced from the

similar constant boundary conditions by the use of Duhamel's

theorem, namely,

t

w2 : f
0

a_ 2
(x,Ia, t-la) du (A-If)

where Q2 satisfies the zero initial condition and constant

boundary conditions
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= B ~ (A-12)
W2xx w2 t

w 2 = 0 at t=0 (A-12a)

at x=-h (A-12b)

Q2.= #E(_) at x=h (A-12c)

The solution for w2 can be obtained by the superposi-

tion of steady-state solution # and a transient solution

v which satisfies homogeneous boundary conditions, i.e.,

w2 = $(x,u) + v(x,U,t-_)

where

(A-13)

(A-14)

and

# = ¢W(p) at x=-h (A-14a)

¢ = #E(p) at x= h (A-14b)

Vxx = B v t (A-15)

v : -_(x,u) at t= 0 (A-15a)

v = 0 at x=±h (A-15b)

The steady-state solution @(x,u) for the ordinary

different_ equation (A-I_) is known to be

#(x,iJ) = ,_ [#E(IJ) _(.)] ÷ ½ [tE (") .,. tW(.)]

(A-16)
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which, in turn, is the initial condition for equation

(A-12).

The solution for v is similar to that for w I, except

that the initial condition #I(X) is replaced by -_(x,u).

Thus,

2

v : 7 b e- -B t sinln(X+h)
n:l n

where b
n

i.e.)

can be obtained from the initial condition (A-12),

h

b n : I -_(x,_) sinkn(X+h) dx
-h

tW (u) - tE(U) h
f

2h 2 -h
x sinkn(X+h) dx

tW (_) + #E(_) h
I

2h -h
sinkn(X+h) dx

1
[(-l)n@E(p) -

Thus, w2 : v +

® 1
= E

n:l

2
)_n

[ (_l)ntE(_)_@W(_) ]e- -_-t

#E(_) - _w (_) #E(p) + QW(I.*)

sinin(X+h)

+ x 4. (A-17)
2h 2
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After knowing w2' w2 can be obtained from Duhamel's

theorem by substituting w2 into eq(A-ll)

taG 2
(X,p,t-p) d_w2 = $ at

o

n:l

2

kn t n
_-_ I [(-I)n_E(P)-_W(_)] e--_-(t'_)sinAn(X+h)d_

0

n=l

2
A2 An

hBA--nn n t e -_- _ n¢Ee--B-tsinA (x+h) I [¢W-(-I) ] d_
n 0

Hence, the analytic solution ¢ for the linear or

linearized convective transport equation(A-l) will be

A 2 A2

= w eAx-_-t = (w I + w2 ) eAX--_-t

2
A 2 + An

Ax- t
Z e B sinAn(X+h) {a n +

n=l

An t
h-_I

0

_2

e [#W(_) - (-l)n#E(_)] d_}
(A-18)

Evaluating the local analytic solution (A-18) at the

interior node NC(0,2T) in Fig. 2(b) will give an algebraic

relationship between the nodal point NC and the seven

neighboring nodal points, i.e.,
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_NC : ¢(0_2_)

® -2

: E e

n:l

Xn 2T

+FF. r
0
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A 2 +X 2
13..

" nTr
B sin -_{a n

X2
n

[@W(_) - (-l)n#E(_)] dv }

n+l

-(-l) T , n is odd

where sin n_ _
2

0 , n is even

280

(A-I9)

Equation (A-19) can be further simplified by letting

n = 2m-l, m: i, 2, 3, ..... , so that

E -(-I) m e
_NC m=l

2
A 2 +X m

B
T

{a
m

2
Xm

_'m 2-t --g-u
+ _-_ I e

0
[@W(_) + CE(_)] d_ }

(A-20)

where

(2m-l)m

Xm - 2h

am = asE0m + bsh Elm + csh2E2m

and 2
Xm

2T, -'_-_
j' e

0
JeW (u) + _E (u) ] d_
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= f

0

A 2 + >2

B mp
e

281

[eAh(a w + bw_ + Cw2) + e-Ah(aE+bEl_÷CE_2)] d#

= (eAhaw + e -AhaE)eom ÷ (eAhbw • e-AhbE)Telm

+ (eAhc W + e'AhcE)T2e2m

where

2 T Fm_

e0m : I e d p =
0

2F 't
1 (e m _ i)
Fm

i 2 T FmlJ
= - I ]Je

Im T 0

2FmTi
diJ = _-- (2e

m

i 2_ 2 Fm_

e2m = _ I lJ e
T 0

dp

2F T
m

2FmT
2e 1

:; g]
(FreT) (Fm_)

T
In

2F T
I 2FmT 4e m

+

: --Fm[4e Fm t

and F
m

Thus,

2
A2 + Xm

B

-2F t
Z -(-i) m e m

m=l
{ asE0m + bsh Elm + csh2E2m

km (eAh -Ah + ( + e-AhbE)tel m÷ h-]_[ aw + e aE)e0m eAhbw

2
÷ (eAhcw + e-AhcE)t e2m } (A-21)

|
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-2F T
-(-l)ml h e m

p. : Z m

m:l [(Ah) 2 + (4mh)2] i
l

, i: i, 2, 3

= -(-l)m4 h
: m

Qi Z '2 2
m=l [(Ah) + (imh) ]i

= -2Fm_

Z -(-I) mE0m e
m=l

=(eAh + e-Ah) PI

® -2Fmt
(I) m

- - Elm e
m=l

+ 2(Ah)(e Ah + e -Ah)

, i:l, 2, 3

-2F I
-(-l)m4 h e m

(eAh + e-Ah) _ m
2 2

m=£ (Ah) + (4 h)
m

Ah Ah
: -(e - e

-2F "c
= -(-l)m4 he m

m

) z ' "2 2
m=l (Ah) + (I h)

m

-2F T
-(:l)ml h e m

m

£ 2 2]2m:l [(Ah) + (I h)

: 2(Ah)(eAh + e-Ah) P2 - (eAh- e-Ah) PI

= -2Fm_ e_Ah
Z -_-I) m E2m e = (e Ah + )

m=l

= -(-l)mA h e-2Fmt
m

E 2 2
m=l (Ah) + (4 h)

m

-2F t
,,- -(-l)ml he m

m

- 2 Z 2 _ + 8(Ah)m:l [(Ah) +(X h)
m

-2F t
-(-l)ml h e m

m

7 21 3m:l [(Ah) + (I h)
m

-2Fmt
= -(-l)ml h e

- %Ah£e Ah - e-Ah) E m

m:l [(Ah) 2 + (Amh)2] 2

:(eAh + e'Ah) [ PI - 2P2 + 8(Ah)2P3 ] - hAh(e Ah- e-Ah)P2
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@0

E
m-1

_m - 2 Fm_ =
_(.i) m _ eome : Em=l

.(_l)m Xm "2FmT
h_ m (i -e )

= "('l)mXmh (i- • "2Fm_

m:l (Ah) + (X h)2

) = ql- P1

E
m:l

-2 Fm_
( l)m _m

_ _ _ elm e

E
m=l

-(-i) m Am l!__ +
m=l _m (2 - Fm _

= 2

=, -(-l)mXm h Bh 2

m:l (Ah) +(X mh)

- 2 Fm_
e )

- 2Fret

-(-l)mkmh(l -e

m:l X m "

Bh2 ( Q2 - P2 )
: 2Q I ---_--

(_l)m _m -2}'m
_ _ e2m e

oo

E _(_i) m Xm [ 4 - 4 _m2T__)m:l _ F_m_ +

-2rm_ )1
(I - e

= 4

-(-I _m_ mh Bh 2

E h) 2 r
m=l (Ah) 2' (X m

., -( .-I)m_ mh

Z ' h)212

,= - (- 1 )taX.mh•Bh 2 2
-2rm_

(I -e )
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4Bh 2
_ (P")2(Q3 - P3 )= _QI -_-Q2 + 2 "r

Substituting as, b S etc. into eq(A-21)_ the B-point

FA formula becomes

_NC = (eAh + e-Ah)Pl ¢SC + [Ah(eAh + e-Ah)P2 -

eAh-e-Ah)Pl ] (¢SE- ¢SW ) + {(eAh+e-Ah) [ ½PI

2 2Ah(eAh _ e-Ah
- P2 + 4(Ah) P3 ] - )P2 } (¢SE + ¢SW

- 2¢SC ) + (eAh¢ +e-Ah¢SW SE ) (QI- P1 ) + [eAh(4¢WC

-3_SW - CNW ) + e-Ah(q_EC- 3¢SE- CNE )] [QI- (B2h'_)(Q2

-P2 )] + [eAh(¢sw + CNW- 2¢WC) + e-Ah(¢sE + CNE-

2¢EC)] [2QI-4(B2h-_)Q2+L+(B2h_)2(Q3-P3)]

Bh 2
: (eAhcww + e-Ah_NE ) { _ (Q2 - P2 ) - Q1 + 2QI-

.B2h-_ Q2 + 4(-_T2)(Q3- P3)} + (eAh_,dc÷e-AhCEc)

Bh2) Bh 2 ){_Q1 - _ (Q2 - P2 ) -_Q1 + B("[_-T Q2 - 8("_"T-T(Q3

-P3 )} + +SW {eAh[ _PI-AhP2 + ½PI-P2 + _'(Ah)2p3

-2AhP2 + Q1 -PI "3QI + 3(B2h-_-)(Q2 - P2 ) + 2QI "
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q(_)Q2 + 4(_T2)2(Q3"P3)] + e-Ah[-_PI" AhP2 +

_PI - P2 ÷ q(Ah)2
P3 ÷ 2AhP2]} + CSE (e'Ah[ _PI +

AhP2 + _PI - P2 + _(Ah)2p 3 +2AhP 2 + Q1 - P1 - 3QI +

2

3(_-T)(Q 2 -P2) + 2QI - 4(_2)Q2 + 4(_2)2(Q3-P3 )]

+ eAh['lP1 + AhP2 + ½P1 " P2 + 4(Ah)2P3 " 2AhP2]}

+ ¢SC {(eAh + e-Ah) [P -
1 Pl ÷ 2P2 - 8(Ah)2p 3] +

4Ah(eAh -Ah)
-e p2} (A-22)

oz.

%c : C w%w + CNE%E + CWC WC + CEC C + CSW+SW

+ CSE¢SE + Csc¢sc (A-23)

where

= _2 Bh2)2( _ _CNW eAh [QI - (P2 + 3Q2) + _(-_t q3 P3 )]

CNE : e'2AhcN W

9

: e Ah Bh _) B2h_CWC [_(-_-t (P2 + 02) - 8( )'(Q3 - P3 )]

CEC = e-2AhCw C

CSW
: eAh I-P2 - 3AhP2 + _(Ah)2p 3 - (_2)(3P 2 + Q2 ) ÷

_(_T2)(Q3 - P3)] • •
-Ah [ "P2 ÷ AhP2 + _(Ah)2p 3]
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= . Bh2_
CSE e'Ah ['P2 + 3AhP2 + q(Ah)2P3 ("_-'(3P2 + Q2 ) +

h(_h-:-)2(Q3- P3)] + cAh[-p 2 -AhP 2 + 4(Ah)2p3]

= eAh -Ah[ -CSC [2P 2 • qAhPy - 8(Ah)2P3] + e 2P 2 4AhP 3

- 8(Ah)2P2]

It is noted that there are five s_z'ie..; summation tePms

P2' P3' QI' Q? ,_nd Q3need to be ,'dtcul.ltt_d. Aft,,v ,_;om,'

invest i_ation, it is tound that tht'ee o[ them can be

expressed £n closed form as

Q1 = "A_ _ (A-?,a)

1

Q3: ;i-iiT, ÷
eAh . e -Ah

1

_^% (A-(Ah)" (e +

Hence, nume,,i,:.,l summat ion is t_eed for P2 and P3 only.

There are several ways in obtai_ing the analytic exptes-

sions (A-2U.,) to (A-2'.('). O,l(,of th('m will be outlined {.

the following.
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Consider

-Ax
e = E a n sinL_(x+h) (A-25)

n=l il

where
h

1
an= _ $

-h

-Ax
e sinXn(X+h) dx

nh

(Ah) + (),nh)

[e Ah. (.l)ne "^h]
?

Evaluating Pq(A-2S) at x:0 gives

thus

1 = Z a n sin n_,--)- = r.
n=l m=l

-(-i) m am

1 : (e Ah + e -Ah)
® -(-l)mLmh

2 )7
m:l (Ah) + (_mh

with n : 2m-i

® -( -I )m_mh 1

Or Q1 : _ 2 h)'_ = eAh • -Ah (A-25a)
m:l (Ah) + (_m e

After obtainin& the closed form of QI' the analytic

expression for Q2 can be easily obtained by differentiatin 8

both sides of eq(A-25a) with respect to Ah, i.e.,

or

dQ 1 - -(-l)mkm h

= -2Ah E
m:l [(Ah)7+(imh)2] _

eAh . e "Ah

(eAh•

® -(-I )mA h
m

Q2 : }1 ?
m=l [(Ah) • (_mh)_] "-_

e Ah . e -Ah
(A-26)
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Similarly, the analytic expression for Q3 can be

obtained by differentiating eq(A-26) with respect to Ah

as follows

dQ2 -(i) m h- Am

: - _Ah _
m:l [(Ah) + (lmh)2] 2

288 !

= -2
(e Ah - e-Ah)2

2Ah(eAh + e-Ah)3

Ah -Ah
e -e

2(Ah)2(e Ah + e-ah) _

thus

Q3 :

÷

2(Ah)(e Ah + e-Ah)

-(-l)mk h
m

}_ --- 2 _ 3
m:l [(Ah) + (k h) _]

m

(e Ah _ e-Ah) 2

.(Ah)2(eAh+e_Ah")3 ÷

Ah -Ah
e -e

8(Ah)3(eAh÷e_Ah;2 -

I

8(Ah)?(e Ah + e "Ah)

1
Ah -Ah

e - e

8(Ah) 3(eAh+e-Ah)2

1

(Ah)Z-(e Ah • e-Ah) 3
(A-27)
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A-2 Exponential and Linear Approximation for

Initial Function_ and Linear Approximation

for Boundary Functions

In this case, the linear convective transport equation

(A-I) is solved in the local element shown in Fig. 2(e).

In order to avoid the unrealistic negative FA coeffi-

cients appeared in Sec. A-l, an exponential and linear

function based on the natural solution of governing equation

(A-l) is employed to approximate the initial condition. As

to the boundary conditions, linear functions are used to

approximate the boundary conditions in terms of the two

nodal points available on each boundary, i.e,,

2Ax
¢(x,O) = a s (e -i) + bsX + cS (A-28a)

¢(-h,t)= aW + bwt
(A-28b)

¢(h,t) = aE + bEt

where

a S -

¢SE + ¢SW - 2¢SC

sinh_Ah

¢SE- ¢SW-cothAh ( ¢$E+¢SW -2¢SC )

bs = _h

(A-28c)

' CS : QSC'

aw : ¢SW' bw -

_wc" ¢sw

aE : _SE' bE -
Szc" SSE
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With the introduction of a change of variable

A 2

Ax - Tt
¢ : W e

the convective transport equation (A-l), initial condition

(A-28a) and boundar F conditions (A-28b) and (A-28c) can be

transformed to

wxx : B w t (A-29)

w(x,0) : as eAx + bsxe

A 2

Ah +Tt
w(-h,t)= e

A 2

-Ah+-_-t
w(h,t) : e

-Ax + (Cs_as)e-AX : ¢l(X )

(a W + bwt) : ¢w(t)

(a E + bet) : ¢E(t)

(A-29a)

(A-29b)

(A-29c)

The solution of eq(A-29) for w can be obtained bF

superposltion of two simpler problems

w : w I + w_ (A-30)

Where w I satisfies the homogeneous boundary conditions, and

w 2 satisfies the zero initial condition as follows

w I : B (A-31)
xx wit

Wl(X,0) : ¢i(x) (A-31a)

Wl(-h,t)= 0

wl(h,t) : 0

(A-31b)

(A-31c)



+

w 2 : B w 2
xx t

w2(x,0) : 0

w2(-h,t): _(t)

w2(h,t) : _E(t)
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(A-32)

(A-32a)

(A-32b)

(A- 32c)

The solution w I can be obtained by the method of

separation of variables as that described in Sec. A-l,

It gives

2
kn

--_- t

w I : r. a e sinkn(X+h)
n:l n

Which satisfies the governing equation (A-31) and

boundary conditions (A-31b) and (A-31c). The coefficients

a can be determined bv the initial condition (A-31a)
n

h
1

an : _ l #i(x) sinln(X+h) dx
-h

where

: asE0n + bsh Eln + (c S- as)E2n

h
1 Ax

E0n: _ $ e sinln(X+h) dx
-h

Inh

(Ah)2+(_n h)

[e-Ah )neAh._ -(-i ]

1

}:In: V

h

$
-h

xe "Ax sinAn(X+h) dx

(A-33)

(A-33a)



29?

E2n

:(Ah)(), h)
II

[eAh ( l)n -Ah]

(Ah)" +(A h)
n

[eAh n -Ah]"Z +(-I) e

h
-Ax

-h

sinA (x÷h) dx
I%

(A-33b)

Xn h eAh n -Ah
._ _f r - (-I) c 1

(Ah)"+(_ h)
(A-,_ 3_')

The solution w, for eq(A-32) can be derived from

Duhamel's theorem in the same way ,us that shown in Sec, A-I

also, [.e, ,

I] n

:kn - -lh--t t T_

w o : Z _-_ e sinJk (x+h) f e [ {W- (-l)ncrl d_
n:l n 0 '

(A-3W)

Thus, the local analytic solution will be

¢ : w (' :(w I +w2)e

,%

A'
® Ax-,-fC't
)1 +, s£,_X (x+h) { a +

I_"] n P.

Xn t

0

,)

n

T
e [ 4,W(I,)- (-l)n@u(_._)] d_ } (A-35)
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When evaluating the local analytic solution (A-35) at

an interior node P(0,_), a 6-point algebmaic FA fommula is

obtained.

Cp = ¢(O,z)

: _ e

n=l

A 2 + 12
in

- ., - 1
n_ +

sin T{ an

A2
n

Xn T --_-U
I e [ CwCP) - (-l)nCE(p)] d_ } (A-36)
0

nTT

Because si,l T : 0 for even number of n, equation

(A-36) can be further simplified by letting n=2m-l, so that

A 2 + A2
m

-' B
¢p = X -(-I) m e {a n +

m:l

Am

0

2
Am

T
e [ @W (p) + ¢E (g)] dg } (A-37)

where

f
0

e

2
Am

T P[ ¢W (u) + ¢E (p)] dp

eAhaw+ e z Fmp: ( "Aha E) i e
0

d_ +

(eAhbw+e-AhbE) $ be
0

d_



and

F
m

Thus,

+ +
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Fm_ - i) + (eAhbw + e'AhbE )T *

= (eAhaw + e'AhaE ) F_ (e

Fm_ + _)
1 (e Fm_ _ _ Fm
Fm

A 2 + k2
m

= __--g--

_p "

_ m
z -(-i)

m=l

-F
In

e { asE0m + bsh Elm +(c S- as)E2m

F

km [ (eAhaw + e-AhaE ) (em
+ hBF---_

Fm_
Fm_ _ + _.!-)]}

e-AhbE)_(e - Fm _ Fm_

- i) + (eAhbw ÷

(A-SB)

L-

Define

p, = E
1 m= I

-Fm_

_(_l)mlm h e i = I, 2

-( -l)m_.h

Qi " l - 2 Xmh) 2]_m:l [(Ah) + (

i = I, 2

then

E

m=l

E

m=l

Fn_
- (-l)m e Eom =

Fm_

_(-I) m e Elm =

(eAh + e-Ah)Pl

2Ah(e._h+e'Ah) P2
. (eAh.e'Ah) PI



(
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Z
m=l

Fret
-(-I) m e

E2m = (e Ah + e'Ah)Pl

= -FmT X F T
Z -(-I) m e m m

m=l _ (e - i)

= -(-l)ml h -F T

m (i- e m

m=l (Ah) + (I h)
m

) = Q1 " P1

om

Z

m=l

-F T 1 F T eFm _
_(.l)m m m (e m

e hBFm Fm _
I)

+ Fm T

-(-l)mXm h Bh 2

m=l (Ah)2+(l h) 2'
m

-F

_ (_l)mlmh(l_e m )
z

m:1 h)2]2 +
rn

Bh 2

: Q1 T (Q2 - P2 )

Hence,

Cp : as(eAh +e-Ah)p I ÷ bsh[2Ah(eAh + e-Ah)P2 . (e Ah_

-Ah
e )P ] +

1 (c S - as)(e Ah ÷ e-Ah)Pl +(eAhaw +

-Ahe aE)(QI - P1 ) + (eAhbw + e-AhbE)_[Ql + Bh2(T P2

Q2)]

i
[ ¢SE " #SW " cothAh (0SE + #SW " 2_SC )](WAh eoshAhp2

eAh e-Ah (eAh¢sw- 2sinhAh Pl ) + _SC ( + )Pl + +

e'Ah¢sE)(QI PI) + [eAh( _ e-Ah" _WC ¢SW ) + (¢I_ "
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¢SE)][QI + Bh2T (92-Q2)]

_ e Ah _
: (2coshAh ¢SC ¢SW e-Ah¢sE ) ( 2Ah cothAh P2

P1 ) + 2coshAh PI¢SC +(eAh¢s W+ e'Ah¢sE)(QI- PI ) +

[(eAhSwc + e-AhCEc ) -(eAh$sw + e-Ah¢sE) [ QI + Bh2(T P2

- Q2 )]

: (eAh_sw + e-Ah¢sE) { P1 - 2Ah cothAh P2 +QI - P1 - ql

"--_-Bh2(P2 - Q2 ) ] + (eAhSwc + e-AhCEc) { Q1

or"

Q2 ) } + ¢sc { 2coshAh ( 2AhcothAh P2 -PI +PI ) }

Cp = CWCCWC + CECCEC + CSW¢SW + CSE¢SE + CSC¢SC

where

CWC : eAh [QI + Bh2(T P2 - Q2 )]

CEC e-2Ahc: WC

: eAh [ Bh2 ( Q2 - P2 ) - 2Ah eothAh P2 ]Csw T

CSE : e-2AhCsw

(A-39)

(A-39a)

(A-39b)

(A-39c)

(A-39d)

CSC = 4Ah coshAh cothAh P2
(A-39e)

Because QI' Q2 can be expressed in closed form as

shown in eq(A-24a) % (A-2Bb), there is only one series

summation P2 need to be calculated numerically.
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A-3 Hjbrid Finite Analytic Formula for One-Dimensional

Convective Transport Equation

In this formulation, the unsteady term in the convec-

tive transport eq_latlon (A-l) is approximated by a simple

finite difference formula of the form of

¢sc
B_t = B = constant =g (A-_0)

Thus, eq(A-l) becomes

Cxx = 2ACx ÷ g (A-_I)

The analytic solution for eq(A-hl) can be easily

found to be

¢ : a(e 2Ax- i) ÷ b - _x (A-_2)

where a and b can be dPtermined by the boL,ndary conditions

_it x = .*h z'espectively.

¢ : 0[:C, : a(e ?Ah - l) ÷ b - _h

¢ : 0W C : a(e -2Ah- I) + b + _h

at x= h

at x:-h

rvaluat ing the analytic solution (A-42) at x : 0, a

4-point I'A formula can be obtained as follows

- . _ 2Ah 2Ah(e2Ah-l)_c +(e 2Ah I)¢E C . (e + e" - 2)

¢p : --  A-h -2Ah "
e - e
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eAh@w C + e -Ah¢F.C tanhAh
-T'A"E-- gh2 (A-q3)

Substituting g into eq(A-43) results in

o_"

eAh#wc + e'Ah_Ec

_P : A}_ -Ah
e + e

Bh 2 tanhAh

7_- _Ah -" (¢P - _SC

] (CWC_W C + CEC_: C + CSC#,,_O )
CP : I + CSC

(A-_q)

where

2
Rh tanhAh

Csc : -_- ---_--
(A-_a)

eAh

Cwc : Ah :A_
e + c'

-Ah
e

e ÷e

(A-_qb)

(A-q_c)



APPENDIX B

FINITE ANALYTIC FORMULATION OF
UNSTEADY TWO-DIMENSIONAL

CONVECTIVE TRANSPORT EQUATION

In this appendix, the analytic solution for unsteady

two-simensional convective transport equation is derived

for a local element as shown in Fig. 3.

Consider a dimensionless unsteady two-dimenslonal

convective transport equation of the form of

Cxx + Cyy : R [ ct + (U¢)x + (V_)y] + F (B-l)

where ¢ may represent any one of convective transport

quantities, Cj, such as vorticity, velocity, concentration

or temperature. The coefficients u, v and F may be functions

of independent variables x, y and t, and dependent variables

Sj, R is a dimensionless parameter, and is Reynolds number

when _ represents vorticity or velocity. Since, in general,

an analytic solution o| equation (R-I) in the local element

is not available due to variable coefficients and/or

nonlinearity, the finite analytic numerlcal method IB used

to obtain the local analytic solution.

In order to solve the convective tran|port equation

(B-l) analytically in the local element, eq(B-1) la fir|t
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rearranged to be

with

¢xx + Cyy : R ( Ct +U¢x+VCy) +F +R[ (u'¢)x+ (v'¢)y]

(B-2)

u(x,y,t,¢j) : U -+ u'(x,y,t,¢j)

v(x,y,t,¢j) = V ÷ v'(x,y,t,¢j)

(B-2a)

(B-2b)

where U and V are representative constant values in the

local element, for example, the velocities at the interior

point P or the area-averaged velocities over the small

element.

When the local element is small enough, the deviations

u' and v' from U and V should be small also, therefore the

term R[(u'¢) x + (v'$)y] may be considered as a higher order

correction term. Denoting two time steps tn_ 1 and tn, one

may locally linearized the convective transport equation

(B-l) by approximating the inhomogeneous and the higher

order correction term as a function known from previous

time step tn_l, i.e.,

(¢xx+ ¢yy)n: R($t +UCx+VCy)n+ fn-l(x,y,¢j) (B-3)

where

f(x,y,t,¢j) : r(x,y,t,¢j) + R [ (u'¢) x + (v' ¢) ]
Y

Equation (B-3) is a linearized PDE with constant

soefficients at n th time step, various solution methods
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as those described in Appendix A can thus be employed to

obtain the analytic solution for this linear partial

differential equation.

In order to reduce the complexity of the derivation

and to save the computational time, a hybrid FA method as

that outlined in Sec. A-3 will be employed in this appendix

to approximate the unsteady term as follows

n n-i

Cp - #p
Rtt = R = constant (B-h)

T

Furthermore, the nonhomogeneous part fn-l(x,y,¢j)

can also be approximated by a representative constant

value fp in the local element to further reduce the

manipulation effort and computational time needed. Under

these approximations, the unsteady 2D convective transport

equation (B-l) is simplified to be

with

Cxx + ¢yy = 2ACx ÷ 2B¢y + g

A: ½ RU, B_ ½ RV

(B-5)

n n-i

_p - _p
and g = R + fp (B-5a)T

The constant inhomogenecus term in eq(B-5) can be

taken care by introducing a new variable

= ¢ + .... g - (Ax + By) (B-6)
2(A 2 • B2)
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such that the new variable _ satisfies the homo8eneous

governing equation

+ : 2A x + 2eSy (e-7)

in the local element.

For the problem to be well-posed, four boundary

conditions are specified on the east_ west, south and north

boundaries in terms of the 8 boundary nodes of the local

element. Depending on the local element and boundary

functions chosen, several local analytic solutions will be

derived in the following

(i) Uniform grid spacing local element (hE=hw=h, hN=hs:

k) with exponential and linear boundary approxi-

mation. (see Fig. _(a))

(2) Nonuniform grid spacing local element (hEJhw, hNg h$)

with exponential and linear boundary approximation.

(see Fig. _(b))

(3) Uniform grid spacing local element (hE:hw:h, hN:h S

:k) with piecewise-linear boundary approximation.

B-I Finite Analytic Formulation of Two-Dimensional Convec-

tive Transport _uatlrOn for Uniform C_Id LScal Element

w_th Exponential an_ L{near Boundary Approximations

In this case, the local analytic solution for steady

or unsteady 2D convective transport equation is derived in
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a rectangular local element of unlfomm grid spacing shown

in Fig. q(a).

For the linear homogeneous partial differential

equation (B-7) to be well-posed in the local element shown,

an exponential and linear boundaPy function based on the

natural solution of equation (B-7) is specified on all of

the four boundaries in terms of the 8 boundary nodes of the

local element. For example, the boundary condition at north

side can be approximated by

_N(X) : aN ( e 2Ax- I) + bNx + cN (B-8a)

where

%NE+&.W-2%NC
a N :

qsinh2Ah

bN _NE- %NW"cothAh(%.Z+ _.W" 2&NC)

and the other three boundary conditions for south, east and

west sides, i.e., _S(X), _E(y) and _(y) can be similarly

approximated.

_s(x) = a S ( e 2Ax- i) + bsX + cS

_E(y) = a E ( e 2By- I) + bEY ÷ cE

_w(y) = aw ( e 2By- i) ÷ bwY + cw

(B-8b)

(B-8c)

(B-ed)

With the introduction of a change of variable
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= w e AX + By (B-9)

Equation (B-7) and boundary conditions (B-8a) to (B-8d) are

transformed to

+ w = (_A2 + B 2) w (B-IO)
Wxx yy

w(x,k) = e -Bk [ aNeAX+bNxe-AX+(cN-aN)e-AX]:wl (x) (B-10a)

Bk aseAX+bsxe-AX÷(.Cs_as)e'AX]=_2(x) (B-10b)w(x,-k)= e [

w(h_y) = e -Ah [ aEeBY+bEYe-BY+(cE-aE)e-BY]=w3 (y) (B-10c)

w(_h,y)= eAh [ aweBY+bwYe-BY÷(CW_aw)e-BY]=wk(y) (B-lOd)

Under the method of superposition for linear equation

(B-10), this problem can be solved analytically by further

dividing it into foun simpler problems with each of them

contains one inhomogeneous and three homogeneous boundary

conditions, i.e. ,

E W w N + w S (B-f1)
W = W + W ÷

Problem (I)

N w N A 2 B2 N (B-12)w + =( + )w
xx yy

N
w (x,k) : wl(x)

wN(x,_k) : wN(h,y) : wN(-h,y) : 0

(B-12a)

(B-12b)
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Problem (II)

w S + w s = (A 2 + B 2) w S (B-13)
xx yy

305

S
w (x,-k) = w2(x) (B-13a)

S
k) = wS(h,y) : wS(-h,y) : 0w (x,

Problem (III)

w E + wE : (A 2 + B2) w E
xx yy

wE(h,y) : w3(Y)

wE(_h,y) = wE(x,k) = wE(x,-k) = 0

(B-13b)

(B-I_)

(B-l_a)

(B-I_)

Problem (IV)

wW ÷ ww = (A 2 + B2) ww (B-IS)
xx yy

wW(-h,y) = wk(y) (B-15a)

wW(h,y) : wW(x,k) : wW(x,-k) : 0 (B-15b)

Problem (I) - (IV) can be solved analytically by the

N
method of separation of variables. For example, let w =

X(x)Y(y) and substituting it into eq(B-12), the linear

PDE is then separated into two ordinary differential

equations.

X" + X2X : 0

X(-h) : X(h) =0

(B-16)

(B-lSa)
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Y" - (A2 + B2 ÷ 12)Y "- 0

3O6

(B-17)

(B-17a)

The two boundaPy conditions in the x-diPection, x =

±h, in this case can be used to find the eigenvalues
n

And the series solution w N can be written as

mo

wN(x,y) : E A sinhPn(Y+k) sink (x÷h)
n=l n rl

(B-18)

1

with An = 7-h ' Un n n-i, 2, 3, ....

The coefficients A n in eq(B-18) can be easily obtained

by applying the nonhomogeneous boundamy condition (B-12a),

i.e.,

wN( ®
x,k) : Wl(X) : E

n=l
A n sinh 2Unk sinkn(X+h) (B-19)

whePe

h
1

An = F f Wl(X) sinAn(X+h) dx
-h

and

-Bk

= • [ + bN h
sinhU-2Pn k aNe0n eln

On

1 h Ax
/ e
-h

sinXn(X÷h) dx

+ (cN-aN)e2n ] (s-20)

[e -Ah . (.l)ne Ah] (b-2Oa)

l
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h
1 -Ax

eln = _ !h xe
sinXn(X+h) dx

2f.Ah)(._,nh)

[cAh)2+cx"h)2]"2
1%

[ eAh _ (.l)ne "Ah] .

X h
n Ah _ (_l)ne-Ah]

(Ah)2+(X h) _ [ e
rl

307

(B-2Ob)

h
I -Ax

e n̂,: = _ I e sinXn(X+h) dx
-h

X h
n

(Ah)2- + (A h)
n

[ eAh - (-l)ne -Ah] (B-20c)

The local analytic solution (B-19) when evaluated at

the interior node P of the local element located at (0,0)

gives the finite a1%alytic algebraic equation relating the

interio_ nodal value ¢o the.8 .boundary nodal values as

N wN ( ®w = 0,0) = E
n=l

An sinh_nk sin_nh (B-21)

0 , n=2m
Since sinX h : sin L_i =

n z -(-i) m, n=2m-I
m:l, 2, 3,...

eq(B-21) can be further simplified to be

em
w = Z

m=]

-(-l)me "Bk slnhAmk

slnh 2_mk
[ aNeOm+bN h elm +(cN'aN)e2m]
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Define

-Bk _ -(-i) m

• e E 2coshp k [ aNeom +
m=l m

_hen

-(-l)mA h
m

• = Z 2 h)2]i coshNm k£± m:l [(Ah) + (I m

mE -(-l)m = (eAh+e -Ah)-i c°shPm_ eOm

bNhelm+ (cN-aN)e2m]

(B-22)

, i = 1,2 (B-22a)

-(-l)m% h
m

Z 2 h)2]coshPmkm=l [(.Ah) +(I m

= 2coshAh E 1
(B-22b)

_(_l)m _ -(-l)ml h

E coshPm k elm = -(eAh-e-Ah) E m
m=l m=l [(Ah)2+(Imh)2]coshUm k

+ 2(Ah)(eAh+e -Ah)

-(-l)m% h
m .....

E 2 h)2]2coshPm km=l [(Ah) ÷(A m

= 4Ah coshAh E 2 - 2sinhAh E 1
(B-22c)

_(_l)m : (eAh+e-Ah)
E coshUm k e2mm=l

-(-l)mXm h

m:l [(Ah)2+(kmh)2]coshPmk

: 2coshAh E 1
(B-22d)

Substituting a N, b N and cN into eq(B-22), the local

analytic solution becomes

b-.
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(qAh coshAh E 2 - 2sinhAh E 1 ) * _NC(2CoshAh E2)}

-Bk ~ _ eAh -Ah: e { (2coshA_ _C _- e _E) (Ah cothAh E2

1
- y E 1 ) + (coshAh EI)_C}

-Bk
: e [ ( ½ E 1-AhcothAh E2)(e'Ah_NE + eAh_Nw) ÷

(2Ah coshAh cothAh E2)$N C] (B-23a)

ss -E -wSimilarly, , Cp and Cp can be solved in terms of the

nodal values at the south, east and west boundary respec-

tively.

where

_S = eBk [ ( ½ EI_A h cothAh E2)(e-Ah¢sE+ eAh¢s W) +

(2Ah coshAh cothAh E2)¢SC ]
(B-23b)

~E = -Ah 1 (e-Bk_N E_p e [ ( _ E_- Bk cothBk E_) + eBk¢s E) +

(2Bk coshBk cothBk E½)¢E C]
(B-23c)

%Wp = eAh [ ( _I r,-.i Bk cothBk E_)(e-BkSN W + eBk$s W) +

(2Bk coshBk cothBk E_)$WC ]
(B-23d)

- -(-l)m(A_k)
E! : E i = i, 2

l m=l [(Bk) 2 ÷ (_k)2] i cosh_h '
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A B2, = (2m-l)_ , : / 2 _,7
_m 2k ' Pm + + m

310

The 9-point FA formula relating the center nodal value

_p and its neighboring nodal v_lue8 can thus be obtained by

superimposed the Cour solutions of the linear problems ([)

- (IV), or

., -E _W

: (e-Ah-Bk_N E + eAh-BksN w + e'Ah+Bk$s E +

eAh+Bk_sw)[ _-(E 1 + El)- Ah cothAh E 2 -Bk cothBk E_]

+2Ah coshAh cothAh E 2 ( _-BksN C + eBk_sc) +

-Ah + eAh$ )2Bk coshBk cothBk I'_ ( e _EC WC (_-24)

Since _ : I and _ : -Bx+Ay are two particular solutions

of convective transport equation(B-7), and both of them can

be represented by the exponential _incl linear boundary

functions (B-10), it is instructive to utilized these exact

solutions to obtain the analytic expressions between series

' [" and E_summa +ion terms E 1 , F.1 , 2 aS follows

(a) ¢ : ]

_,','[n,:e _ : 1 is an analytic solution of eq(B-7) and

can he represented by bounda_-y functions (B-10), it should
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satisfies the I'A formula (B-24) also. By substituting

into eq(B-24), an analylic relation between E 1 and E{ can

be obtained

_p = 1 : (e-Ah+eAh)(e-Bk+e Bk) [ _( El+E { ) -Ah cothAh E? -

!_k cothVk v,],,2+ 2Ah coshAh c'othAh E2(e-Bk+e Bk)

,(e-Ah÷eA h)
÷ 2!_k co._;hI_kcothBk E 2

Of'

°_
--,'ccshAh coshBk(E I+E'I )

I
E 1 + E{ : _hAh CoshBk (B-25)

(b) _ = -Bx+Ay

Similarly, _ : -Rx+Ay satisfies the FA formula (B-24)

also. It gives &p = O, _rc -- -Bh, _NC -- Ak etc. By substi-

tuting these values into eq(B-?4), an analytic expression

' is obtainedbetween between E2 and F2

_p : 0 : [Ak(, ,-Ah-l_k
+eAh'Bk_e-Ah*Bk_eAh+Bk ) + Bh(eAh-Bk+

Ah_'_k -Ah-Bk -.Ah+Bk) _ " + thAh i'?e -e -e ] [ (I I E{)-Ah co

-Bk
- Bk cothBkF._; ] + 2Ah coshAh cothAh E2 Ak (e

Bk
e ) + 2Bk coshBk cothBk E_ Bk(e Ah- e "Ah)
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1
_, ,_q_,-_o--_-_- (llh s]nhAh co,,lh[4k-AI,, collhAb _inhBk)

li(Ak)CBk)eo:_hA|" ,,_inhBk eothBk 1",_

- li(Ah_(l_h)c.oshBk s_tlhAh cothAi_ I:2

h _" K, i Ak tanhBk - Bh t,lt_hAh

!

| ;,'i i_i:_)"i - ,_I_(i:i

%

h?l ", - k'l",
}_h ?.tilhAh - Ak t,Ii_h}%k

[_'f { t*,'

Ii : _ ( I" 1 i I'!' '_ - Ah ,'othAh I:.,, - tit ,'oih!Ik I:.;,

(t_-)t_l,)

(I_- '_<')

I_^ .'Ah ,'o:ihAh ,'oihAh I'., ( I_ -2 l',, 1

I:t_ .'l_k ,',,._hl_t ,'<,thllk I:', (l_-: 6,,)

'l'tl,,ll ih,' 'l-l,,,illl i illil., .lll._:v! l,." ;;olutloll (!1-21i_ C.111 br"

.'Itl,llll,ll" i .'.i'cl .1:_

il' "NI'INI ' ' C'NW_'NW + C::I:'tS_' ' _'I'{'II:Ci t'Wt'iWt" +

whl, I'l,

t'l.t,@t.i" i i' " i " (I_-; '_
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CNE = e"Ah'Bk E , CR w : eAh'Bk E

-Ah+Bk = eAh÷Bk E
CsE = • E , CSW

-Bk(EA)
CNC = e

CEC = e-Ah(EB)

CSC = eBk£EA)

CWC = eAh(EB)

After applying the analytic expressions (B-25) and

(B-26), there is only one series summation term E 2 need to

be evaluated numerically. In most of the applications, i0

terms of summation for E 2 are enough to achieve an accuracy

of 10 -6 •

For the unsteady, inhomogeneous convective transport

equation (B-5) with higher order correction term, i.e.,

g _ 0, the local analytic solution can be obtained by

substltutin E _ of eq(B-6) into eq(B-2q) for @ , which gives

%p = CNE#NE +CNw_NW + CSE#SE + CSW_SW • CEC%EC ÷

CWC_WC ÷ C_IC_NC + CSCOS C - Cpg (B-28)

where

_, 1 .. [ Ah(CNw • _ + _ . -
Cp = 2(A2+B_) _$W CWC CNE CSE

CEC) + Bk(CsE + CS W ÷Csc . CN E -CN W- CNC)] (B-2Sa)

or

Cp =
i. { Ah tanhAh • Bk tanhBk -

2(A_'+B 2 )

_coshAh coehBk [ (Ah)2E2 • (Bk)2E_ ] }
(B-28b)
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By substituting M of eq(B-Sa) into eq(B-28), a

10-point FA formula for unsteady inhomogeneous convective

transport equation with higher order correction term can

be obtained

1

tp =
I+RCp

(C_!ECN. E + CNW¢NW + CSE¢SE + CSW¢SW +

R n-i
CECCEC + CWCCWC + CNCCNC + CSC¢SC ÷ _--CpOp

- Cpfp)

where

fp : fn-l(x,y,¢j)IP(0,0 )

(B-29)

and the nodal values without superscript denote those

n-I
values evaluated at n th time step, while tp denotes

the nodal value of interior point P at (n-l) th step.

B-2 Finite Anal[tic Formulation of Unsteady Two-Dimensional

Convective Transport Equation for Nonuniform Grid

Spacing Local Element with Exponentiai and Linear
Boundary Approximation

In previous formulation, the local analytic solution

is derived in terms of the eight boundary nodes which are

equally spaced on the boundary of the rectangular local

element with grid spacing h and k respectively. A 9-point

FA formula is then obtained by evaluating the local

analytic solution at the center of the local element. The

resulting 9-point FA formula is applicable to problems
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with uniform rectangular or square elements over the whole

domain of calculation. However, in many engineering appli-

cations, the use of nonuniform grid spacing local element

as that shown in Fig. q(b) is often desirablep because it

enables us to obtain physically meaningful solutions more

effectively.

It is possible to derive a local analytic solution

for the local element of nonuniform grid spacing (see Fig. 3

or Fig. _(b)) in a way similar to that outlined in B-I. For

example, an exponential and linear boundary func%ion can be

employed to approximate the north boundary condition in

terms of the three unequally spaced nodal values ¢_E' _W

and -N_'Cas follows

where

_(x) = aN ( e 2Ax- 1) ÷ bNx + c N

aN =

b N =

-2Ah W
e - 1

2Ah E
e - 1

-2A_1
= 5[(e

CN : ;NC

(B-30)

: _ [ hW_E+hE_w-(hE+hw )_iC ]

(B-30a)

_W" @NC

2Ah E
- 1 ) ( _1_." &]_c) " ( c - I)(_s "_c )

(B-3Ob)

(B-3Oe)

BB.__
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and

n --"

- 2Ah W
e -i

2 Ah E
e - 1

-hW

h E

2Ah E - 2Ah w

= hw(e - I) + hE(e - I)

With homogeneous boundary uondltions assigned for

three other boundaries, the corresponding analytic solution

wN(x,y) for eq(B-12) will be of the form of

N
w (×,y) : E

m:l
An ncosh_n(y + h S) sinX (x + hw) (_-31)

where

Xn _ Un +' n

and the coefficients A for the series solution (B-31) can
n

be obtained by performing the similar integrations as COn,

eln and e2n in Sec. B-I. Similar solution procedures can

also be applied to obtain other analytic solutions wS(x,y),

wE(x,y) and wW(x,y). The 9-po{nt FA formula for nonu, lform

grid spacing local element is then obtained by evaluating

the local analytic solution w(x,y) at the origin !'(0,0) of

the local element, i.e.,

with

E W + w_+ w S_p : w(O,O) : wp + Wp

N
Wp : E A coshPnh S sinAnh W etc.

n"l n
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However, because of the unequal upper and lower limits,

the evaluation of A n is more complicate. Furthermore, 12

more summation terms in additional to El, E2, E[ and E_

will be encountered in obtaining the local analytic

solution. These additional difficulties may toally offset

the advantages gained from the use of nonuniform grid.

Thus, in present study, instead of using this general

form_lation, a simpler approximation method utilizing the

local analytic solution (B-28) or (B-29) for uniform grid

rectangular element will be employed to derive the finite

analytic solution for the case of nonuniform grid spacing

formulation.

Consider the case n E < hW and hN< h S shown in Fig. _(b)

as an example. A smaller rectangular element of width 2hE,

height 2h N and with the interior point P located at the

center can be drawn as shown. If suitable interpolation

functions are employed to approximate the unknown nodal

values 0NW, _WC etc. on smaller rectangular element in terms

of the known values _NW' _NC' #P etc. at 9 nodes which are

unequally spaced on the larger element, then the FA formula

(B-28) or (B-29) derived previously for #p can be applied

to this smaller rectangular element directly. After some

simple manipulation, a FA formulation for nonuniform grid

case can be obtained.

Althoush there are several interpolation functions

I

d



(

ORIGINAL PAGE m 318

OF POOR QUALITY

may be used to approximate the nodal values _NW _ _WC etc.,

the same exponential and linear boundary function will be

employed as the interpolation function to obtain the

unknown nodal values on smaller rectangular element, so

that the error introduced by intezpolation will be

minimized. For example_ the north boundary condition can

be approximated by the boundary function

2Ax
-_N(x) = a N ( e - I) + b_x + c N

where aN, b N and c N are defined in eq(B-30a) thru (B-30c).

Evaluating the boundary function (B-32) at x = -h E

will give the interpolated nodal value CNW

, -2Ah E

CNW : CN(-hE ) : aN ( e -i) - bNh E + c N

where

2Ah E -2Ah E

hw(e + e -2) h E

s - _AhE _2_h w , and s : s _W

hw(e - I) + hE(e - I)

(B-33a)

Similar exponential and linear boundary functions can

be employed to obtained other nodal values _WC' ¢SW etc.

C : (s'I)¢EC ÷ _¢WC ÷ (2-s-_)¢p

#_ : (t-I + " + (2-t-{)#pSC )¢NC test

(_-33b)

(B-33c)
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(B-33d)

+ S¢l ÷ (2"t'{)¢SC
: (s-l) ¢S£

= (s-l)(t'l)¢N£ + {(s-l)¢SE + (s-1]C2-t'{)¢EC +

E(t-I)¢NW + S{¢sw ÷ s(2"t'E)¢WC ÷(2-s's)(t'l)¢_C

(B-33e)

+ _(2-s-E)_SC + (2-s-_))(2-t-_)<"P

I

where
2Bh N -2Bh N h N-2)

hs(e + e _ _ , and _ : t

t = __ + h.,(e -'_'_. i)

hS(e -i) N °

After knowing all 9 nodal values on the smaller

rectangular local element) the g_point FA fommula (B-28)

derived previously can be appl ied to this smaller element,

i.e,,

- Cp g+ CSC¢SC
Cwc)Wc+ c.c%c

substituting the interpolated nodal values (B-33a) -

(B-33e) into eq(B-3_) will give a 9.point Pk formula for

local element of nonuniform g_id spacing as follows

+ C +
÷ CNW_W + CSE¢SE SWCS w CECCE C

(B-3_)
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1 + bNW_N W + bSE¢SE + bSW#BW + bEC@EC +
#p = _ (bNE_NE

(B-35)
+ - bpg)

+ bNC_NC bSC_SC
bWCQWC

bNE = CNE + (s-I)CNw + (t-lJCsE + (s-I)(t-I)Csw

bNW : SCNw + _(t-I)Csw

bSE : {CsE + _(s-I)Csw

bsw : s{Csw

bEC = CEC + (s-I)CwC + C2-%-_)CsE + (s-I)(2-t-_)Csw

bwc = _Cwc + _(2-t-{)Csw

bNC

bSC

+ (2-s-_JCNw + (t-l)(2-s-_)CSW
: CNC + (t-I)CsC

: {Csc + {(2-s-_)CSW

bp : Cp

where all of the FA coefficients CNE, CNW etc. are definel

previously in eq(B-27) and (B-?8) with h : h E and k = h N.

A 10-point FA formula for unsteady 2D convective

transport equation can also be obtained by furthe_

substitution of g in eq(B-5a) into eq(B-35).
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Cp =
1

:R bp (bNECNE + bNW_ + bSE¢SE + bsw¢sw +G+T

n-i
bECCEC + bwcCwc + bNC#NC + bsc¢sc + _Rbp@p

- bpfp ) (B-36)

where the nodal values without superscript denote those

n-I
values evaluated at nth time step while Cp denotes the

nodal value of interior point P at (n-l) th time step.

For the cases hE > hW and/or h N > hs, the finite analytic

formula (B-36) can still be applied by simply opposite the

flow direction and rename the nodal points. These procedures

can be carried out easily in the numerical calculation,

details can be found _n the subroutine of attached computer

program shown in Appendix D.

B-3 Finite Anal_tic Formulation of Unsteady Two-Dimensional
Convective Tmansport Equation for Uniform Grid Spacing
Local Element with Piecewise-linear Boundary

• .._ m

Approxlmat zon

In this case, the unsteady 2D convective transport

equation is solved in the rectangular local element shown

in Fi 8. h(a) using the same solution method Eiven in

Sec. B-l, except that the exponential and linear boundary

function is replaced by the piecewise-linear boundary

condition. Following exactly the same procedures as those

described in Sec. B-l, the unsteady convective tmansport
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equation is simplified to be an equivalent elliptic PDE

(B-5) with constant inhomogeneous term, and the solution

for (B-5) can be further separated into a homogeneous

solution ¢ and a particular solution shown in eq(B-6),

such that _ satisfies the linearized homogeneous convective

transport equation (B-7) in the rectangular local element.

Instead of using exponential and linear boundary

approximation, a piecewise-linear profile is employed to

approximate the boundary conditions for all of the four

boundaries of the local element. For example, the north

boundary condition SN(X) is approximated by

SNE- CNC

_NC + h x , 0<x<h

_N(X) = (B-37)

$Nw-
SNC h x , -h < x < 0

The boundary conditions for the south, east and west

sides, i.e., $s(X), dE(y) and _(y) can be similarly

approximated by piecewise-linear boundary functions. With

the transformation w = Se (Ax+By)- , the linear convective

transport eq(B-7) with piecewise linear boundary conditions

can be transformed to

+ w = (A2÷B2)w (B-38)
wx× yy
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w(x,-k):w2(x):
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-Bk
e [ CNce'A_'_:+(.#NC-$NW ) _ e'AX],

eBk [ ¢sce'AX+( ¢SC-_,$E ) _[e'AX],

e [  sce-AX+C%Sc-%sW)
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O<_x<h

-h<_x<_0

0 <.X <h

-h<_x_0

i

wCh,y):w3(Y)=

w(-h,y)=w4(y):

e-Ah [ CEce-BY+(¢EC-¢NE) kZ e-BY],

e-Ah [ CEce'BY+(¢EC-¢SE ) kZ e-BY],

eAh [ _Wce-BY+(¢WC-¢NW ) k_ e'BY],

eAh [ Cwce-BY+(¢WC-¢SW ) _e'BY],

0<_y<.k

-k<_y<_O

0<_y<.k

-k<y<_O

Equation (B-3B) can be solved by the method of

separation of variables as those used "n solving equation

(B-IO) , i.e.,

w(x,y) = w N + w S + w E + ww (B-39)

where wN S E W, w , w and w satisfy the same equations and

boundary conditions for problem (I) - (IV) in See. B-I.

Thus, the analytic solution for wN(x,y), for example, will

be
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kl ,y) =w (×
)] A n sinhZn(Y÷k) sinXn(X÷h)

p,: 1

32%

(B-_O)

where

h
1

An=If
-h

wl(× ) sinXu(×+h) dx

e "Bk _ h .AXsinXn(X+h) dx] +

: -_ { i_ct -h_

1 h _AXsin ln(x+h) dx] _

0 _Ax i (x+h) dx]}
1 f xe n \u

-Bk xnh Ah ( l)ne-Ah ] _NC +
e { -----T-9-,-__ [ e - -

(Ah)" +t_n,,,

2(Ah) (Xnh)

(-l)ne'A_h ( Xnh

? (Ah )( knh ) cot;

(Ah )2 _ ( ),nh) '2

u_, + _..__.-_._ sin
[ ( Ah ) + ( ),nh ) i

CAb) 2 (lnh) '2. I%11

-r-

) ÷

Ah

? + _ (-Xuh +

2(Ah)(Inh) ) ] }

(R-_I)



t
i

OF PO0;_ QU_.,.a_:"
325

The local analytic solution (B-40) when evaluated at

the interior node P of the local element gives the finite

analytic algebraic Pelation between interioP nodal value

N
Wp and three neighboring nodal values at north boundary

N
Wp = l An sinh_nk sinX h

n=l n

= Z -(-i) m
A sinh_mk , n = 2m-I (B-_2)

m:l m

Substituting Am in eq(B-41) with n = 2m-I into eq(B-42)

mesults in

= -(-l)mX h

N -Bk 1 m Ah -Ah) ~
Wp = e { Z 2eosh_mk • #NCm:l (Ah)2+(X h) 2 ( e -e +

m

-Ah -('l)mXmh (Ah)2-(Xmh)2

($NE - %NC ) [ e 2 2 +
(Ah) +(l h) [(Ah)2+(X h)2] 2

m m

+ 2(Ah)e -Ah
-(-l)mlm h

2 2]2
[(Ah) +(lmh)

] - (_NW - _NC ) [

(Ah)2_(X h) 2
m Ah

[(Ah)2+( _ h)2] 2 - e
m

-(-l)mX h
m

(Ah)_+(_ h)
m

÷
2

-(-l)ml h
2(Ah)eAh m

[(Ah)2÷(X h)2] 2 ] }
m

Define
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E, =

l
Z

m:l

-(-l)mXm h

F2 : Z
m=l

2 ?
(Ah) - (Imh)

[(Ah) 2+ (Imh)2] 2 eosh_mk

where

1
Xmh : (m- _) w ,

2

, i: I, 2

then

_N N -Bk [ (Ah)(eAh -Ah
p : Wp : e { CNC - e )E? -F 2] + _NZ [

i -AhEl Ah)e-AhE2 I(F 2 +e ) + ( ] + _W [ _(r2 +

eAhE ) - (Ah)eAhE 2] )I
(B-_3a)

_ -Z -WSimilarly, , ¢p and Cp can be solved in terms of

the nodal values at south, east and west boundary respec-

tively

- S Bk -Ah I
¢p : e { %SC [ Ah(eAh-e )E 2 -F 2] + %SE[ _-( F2 +

- I
e'AhEl) + (Ah)e-AhE2] ÷¢SW [ 7 ( r2 + eAhEl ) -

(Ah)eAhE2 ] }

¢_ -Ah{ ZC [ Bk" : e _ (Bk)(e

(B-h3b)

, i +e-BkE{ )+ %NEt

+(Bk)e'Skr._] • CSE[ _r(r_+eBkr.{)-(Bk)eBkE_]}

(B-_3c)
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¢_ : eAh { _WC [(Bk)(eBk-e-Bk)E_'F_] +#NW[ _(F_+e-BkF"_ )

+ (Bk)e-BkE_] + $$W [ ½(F_+eBkE_)- (Bk)eBkE_] }

(B-43d)

where

- (-I )mXmk

....... i = i, 2
E' = Z 2] cosh_m h1 m:l [(Bk) 2 + (_k)

(Bk) 2 - (k_k) 2

F_ = ;.
m:l [(Bk)_ + c_)_] _ oo_h._h

and l'k = (k- 1 , = /A 2 + B 2 + 1,2
m _)n ' _m m

The 9-point FA formula can then be obtanied by

superimposed the four solutions (B-43a) - (B-43d).

Cp : CNECNE + CNWCNW + CSE¢SE + CSWiSW + CECCEC +

Cwciwc+ CNciNc+ Cscisc (_-',.)
where

CN w : _(ie-SkF2+eAhr_) • eAh'Bk[ - Ah E2 + Bk E 2]'

CSE : +(eSkr2+e'Ahr _) • e-Ah+Bk[ El+El +^hE2-Bk_ ]

csw .}(,kr2..^hr__. ^,,.Skt}(_I+E{_-^,,E2-,kE_
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CEC = _e'AhF_ + (e-Ah+Bk_e'Ah'Bk)(BkIE_
4

CWC = . eAhF½ + (e Ah+Bk

CNC = _e'BkF2 + (e Ah'Bk

CSC = . eBkF2 + (e Ah+Bk

_ eAh-Bk)(Bk)E_

_ e-Ah'Bk)(Ah)E2

-Ah+Bk
-e )(Ah)E 2

It is noted that there are S series summation terms

(El+El), E2, E½, F 2 and F½ need to be evaluated, after

utilizing the analytic expressions (B-25a) and (B-25),

there are still three series summations E 2, F 2 and F½

needed to be calculated numerically.

For unsteady two-dimensional convective transport

equation with higher order correction term, a 10-point

FA formula can be derived by substituting eq(B-Sa) and

(B-6) into eq(B-_0)

Cp = R
1 # -Cp

(CNE¢NE + CNWCNW + CSE¢SE + CSW¢SW

where

* csc c * Cwc wc+ CNCCNC + CSC¢SC ÷_RCp#pn-i

- Cpfp)

i

Cp = _ [Ah(CNw + CSW + CWC -CNE -

(B-45)

CSE "CEc )

÷ Bk(CsE + CSW + CSC - CME - CNW - CNC)]
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APPENDIX C

FINITE ANALYTIC FORMULATION OF

UNSTEADY THREE-DIMENSIONAL

CONVECTIVE TRANSPORT EQUATION

In this appendix, the unsteady three-dimensional

convective transport equation is solved in a local element

shown in Fig. I.

Considered an unsteady three-dimensional convective

transport equation of the form of

txx + tyy + tzz : R [ tt + (U¢)x + (v¢) + (w¢) z] + F (C-I)
Y

where ¢ may represent any one of convective transport

quantities, tj, such as velocities, vorticities, temper-

ature or concentration. The coefficients u, v, w and The

source function F, in general, are functions of independent

variables x, y, z, t and dependent variables tj. R is a

constant parameter such as Reynolds or Peclet number.

Since in most of the engineering applications, the

analytic solution of eq(C-1) is not available due to

variable coefficients and/or nonlinearity, the finite

analytic numerical method is employed to derive the local

analytic solution.

In order to solve the convective transport equation
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(C-l) analytically in the local element shown in Fig. 6(a),

eq(.C-l) is first rearranged to be

Cxx + Cyy + #zz : R (Ct + U#x + VCy + We z) + F +

R[ (u'¢) + (v'¢) + (w'¢) ]
x y z

(C-2)

with

u(x,y,z,t,¢j) : U + u'(x,y,z,t,¢j)

v(x,y,z,t,_) : V + v'(x,y,z,t,¢_)

w(x,y,z,t,_) : W + w (x,y,z,t,_j)

where U, V and W are representative constant values in the

local element, for example, the velocities at the interior

point P or the area-averaged velocities over the local

element, u' ' ', v and w denote velocity components in the

local element that deviate from U, V and W and are

sufficiently small when compared with U, V and W. Therefore,

!

+ (V'¢) + (W'$) ] may be considered asthe term R [ (u ¢)x y z

a higher order correction term.

Denoting two time steps tn-i

mately write eq(C-2) as

and t , one may approxi-
n

(4_xx + Cyy

where

n + )n fn-I y,z ¢])÷ Czz) --R(¢t +UCx +VCy W@z + (x, ,

(C-3)

f(x,y,z,t,,_]) : r(x,y,z,t,,_) ÷R [ (u',) x + (v'¢) + (w'_) ]
y z

(C-3a)
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Eq(C-3) can then be written as a linear or linearized

partial differential equation with constant coefficients

of the form of

Cxx + Cyy + Czz = RCt + 2A@x + 2B@y + 2C@z +

fn-l(x,y,z,_j ) (C-4)

where A = ½RU, B = _RV and C = ½RW are constants in the

local element.

It is noted that these constants may differ from one

element to another, so that the overall nonlinear behavior

is approximately preserved.

The linear or linearized partial differential equation

(C-4) can be solved analytically by similar solution

methods outlined in Appendix A and B. In this study, the

hybrid FA method is employed to approximate the unsteady

term, so that the manipulation effort and computational

time can be greatly reduced, i.e.,

i

n n-I

,p- _p
R_t_ = R T (C-5)

Moreover, the nonhomogeneous term fn-i in eq(C-_) will be

approximated by a representative constant fp (:fn'llp(0,0,0),

for example) in the local element to simplify the solution

procedures further. The linear or linearized PDE (C-_)

can thus be wn_itten as
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R ; n-Ig = -- (¢ - ¢p ) + fp = constantT
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(C-6)

(C-6a)

!

The constant nonhomegeneous term in eq(C-6) can be

easily taken care of by introducing a new variable

$ = @ + g (Ax + By + Cz) (C-7)
2(A 2 + B 2 + C 2 )

such that $ satisfies the homogeneous convective transport

equation

$x× + $yy ÷ : 2A$× + 2BSy+ 2c$z (C-8)

in the local element.

Equation (C-8) with suitable boundary conditions can

be solved analytically by the method of separation of

variables. In this study, the problem is first solved for

a rectangular local element of h E = h W =h, h N = h S = k,

h T = h B = I, (see Fig. 6(a)) and is then extended to that

for the local element of nonuniform grid spacing of h E

hw, h N # h S and h T # h B.

C-I Finite Analytic Formulation of Unsteady 3D Convective

Transport Equation in a LOcal Element of Uniform Grid

In previous formulations, the unsteady 3D convective

transport equation is simplified to be an equivalent
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elliptic PDE (C-6) with a constant inhomogeneous term g as

the source term representing higher ordem .comPection term

and unsteady term in the small local element. By further

subtraction of the particular solution given in eq(C-7)

from ¢, a homogeneous convective transport equation (C-8)

is resulted. For the homogePeous convective transport

equation (C-8) to be well-posed in a rectangular local

element of h E = hW = h, hN = hS = k and hT = hB = i, boundary

conditions must be specified on six boundary surfaces at

x : ±h, y = ±k and z = ±i respectively. In this appendix, the

exponential and linear boundary functions based on the

natural solutions of eq(C-8) is employed to approximate

the boundary conditions in terms of the 26 boundary nodes

available. For example, the boundary condition at top

surface can be approximated by

_T(X,y) = aTl + aT2(e2AX.l)(e2BY-l) + aT3(e2AX-l)y +

where

aTl : CTC

aT2 :

2Ax
aTq(e2BY-l)x + aTs(e -i) + aT6

aT7x + aT8Y + aT9xY

(e2BY_I) +

(C-9)

...... 1.... [ SNET + $NWT ÷ %SET ÷ $SWT ÷
16 sinh2Ah sinhTBk

"_TC - 2(_ECT ÷ _'WCT ÷ SNCT ÷ _'SCT ) ]
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aT3 =

aT4 -

Bk -Bk
- e C¢SET + ¢SWT - 2%SCT) " e (¢NWT + %NET

- 2 _CT ) ]

1 [ 2coshAh ($NCT + $SCT - 25TC)
8h sinh2Bk sinhAh

-eAh($NWT + ¢SWT- 2_CT) -e-Ah(_ET + $SET

- 2 SECT ) ]

_ 1 (¢ECT + %C'I- 2@TC)
aT5 _ sinh2Ah

_ I. (%NCT + %SCT - 2%TC )
aT6 U sinh2Bk

1
aT7 = )-'hi SECT - SWCT - c°thAh(¢ECT + _4CT - 2¢TC)]

1
[ 2coshAh --__w"C -2h s inhAh (e-Ah_EcT + eAhCwcT )]

aT8 : 2-k[ CNCT - ¢SCT - c°thBk($NCT + ¢SCT - 2iTC)]

i [ 2coshBk _ - (e _Bk- e Bk~ )]
2k sinhBk CTC CNCT + ¢SCT

-Ah-Bk Ah-Bk
1 [e % + e % +

aT9 : hhk s_nhAh si-nhBk NET NWT

e-Ah+Bk¢sET + eAh+Bki'_SWT + 4coshAh coshBk CTC-

2coshAh (eBk¢scT + e-BkCNcT) - 2coshBk (eAh_wcT

+ e-Ah%EcT)]
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The boundary conditions for bottom, east, west, north

andsouthsides,ie., ?N(x,z 

and ¢s(X,Z), can be similarly approximated by exponential

and linear boundary functions in tePms of the 9 nodal

values available on each boundary.

With the introduction of a change variable

= w eAX+By+Cz (C-10)

the convective transport equation (C-8) and boundary

conditions (C-9) etc. are transformed to

and

+ w + : (A2+B2+C 2) w
Wxx yy Wzz (C-ll)

w(x,y,l) = Wl(X,y)

-cl aTle-AX-By= e [ + aT2 (eAX_e-AX)(eBY_e-BY) + aT3(eAX

-AX)ye-BY
- e +aTw(eBY_e-BY)xe-AX + aTse-BY(e AXe -AX)

+ aT6e-AX(eBY_e-BY ) ÷ aT7e-BY(xe -Ax) + aT8e-AX(ye-BY )

÷'aTg(Xe-AX)(Y e-By) ] (C-lla)

w(x,y,-l) = w2(x,y)

= ecl [ aBIe-Ax-By +aB2( eAX-e-AX)(eBY-e "By) +aB3(eAX

_ e-AX)ye-BY ÷ aB_(eBY_e-BY)xe'AX + aBse'BY(eAX_e-AX )
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+ aB6e-AX(eBY-e -By) + aB7e-BY(xe

(xe-AX)(ye-BY)]
+ aB9

-Ax) + aBse,AX(ye-BY)

(C-llb)

w(h,y,z) : w3(y,z)

: e-Ah [ aEle-By-Cz + aE2(eBY-e-BY)(eCZ-e -Cz) + aE3(eBY

_ e-BY)ze -Cz + aE_(eCZ-e-CZ)ye -By + aEse-CZ(eBY-e -By)

Cz -Cz -Cz
+ aE6e-BY(e -e ) + aE7e (Ye -By) +aE8 e-By(ze-Cz)

+ aEg(ye-BY)(ze-CZ)] (C-llc)

w(-h,y,z) = w4(y,z)

= eAh [ awIe-By-Cz + aw2(eBY-e-BY)(eCZ-e-CZ) + aw3(eBY

(eCZ -Cz -Cz
_ e-BY)ze -Cz + aWB -e )ye -By + aw5 e (eBy-e-By)

÷ aw6e-BY(eCZ-e -Cz) + aw7e-CZ(ye-BY) + awse-BY(ze-CZ)

+ awg(ye-BY)(ze-CZ)] (C-lld)

w(x,k,z) : ws(x,z)

e-Bk [ aNle-AX-CZ + aN2(eAX-e-AX)(eCZ-e-CZ) + aN3(eAX

-Ax -Cz (eCZ Cz -Ax a e-CZ(e Axe "Ax)
- e )ze + aNq -e- )xe * N5

-Cz( -Ax) ,Ax -Cz)
+ aN6e-AX(eCZ-e -Cz) ÷ aNTe xe + aN8 e" (ze

+ aN9(xe-AX)(ze-CZ)]
(C-lle)
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w(x,-k,z) = w6(x,z)

Bk -Ax-Cz
: • [ asle + as2 (eAX_e'AX)(eCZ.e'CZ) + as3(eAX

_ e-AX)ze -Cz + as4(eCZ -Cz xe-AX asse-CZ(eAX e-AX)-e ) + . -

+ as6e-AX(eCZ_e "Cz) + as7e-CZ(xe-AX) + as8e-AX(ze'CZ )

+ asg(xe-A×)(ze-Cz)] (C-llf)

Applying the method of superposition fop linear

equation, this problem can be solved analytically by

further dividing it into six simpler problems with each

of them having only one nonhomogeneous boundary condition.

i.e., w = wT + w B + wE + w w + wN + w S and

Problem (I)

wxxT + w Tyy + W_z : (A2+B2+C2) wT (C-12)

wT(x,y,l) : Wl(X,y) (C-12a)

T
w : 0 at x :-+h, y :-+ k and z = -I (C-12b)

Problem (II)

w B + wB + B = (A2+B2+C 2) wB
xx yy Wzz

wB(x,y,-l) : w2(x,y)

w B : 0 at x : +h, y : +_k and z : 1

(C-13)

(C-13a)

(C-13b)
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W + W + W
xx yy zz

= (A2+B2+C 2) w E

wE(h,y,z) = w3(Y,Z)

w E = 0 at x = -h, y = + k _Ind z = t 1
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(C-14)

(C-14a)

(C-14b)

Problem (IV)

wW + wW + w w : (A2+B2+C2) wW
xx yy zz

wW(-h,y,z) = wq(y,z)

ww = 0 at x : h, y =-_ k and z = ± I

(C-15)

(C-15a)

(C-15b)

Problem (V)

w N + w N + w N : (A2+B2+C 2) w N
xx yy zz

wN(×,k,z) = Ws(X,Z)

N
w : 0 at X : # h, y : -k and z : + I.

(C-15)

(C-16a)

(C-16b)

Problem (V])

5 2 S
w S + w _ + w" : (A2+B +C 2) w
xx yy nz

wS(x,-k,::) : w6(x,z)

(C-17)

(C-17a)

w S : 0 at Y : f h, y : k and z = t I (C-17b)
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Problem (I) -(VI) can be solved analytically by the

method of separation of variables. For example, by assuming

wT(x,y,z) = X(x)Y(y)Z(z) and substituting it into eq(C-12)

of Problem (I), the variables are separated

X" Y" Z"
X-- + Y'-- + 'Z"" = "'_AZ+B2+C2) (C-18)

The solution for equation (C-18) with homogeneous

boundary conditions (C-12b) is known to be

wT(x,y,z) = E E

m=l n=l
Amn sinlm(X+h) sin_n(Y+k)

sinhYmn(Z+!)
(C-19)

with

m_ nw
_m : 2-h' _n : 2-k and Xmn /A2+B2+C2+k2+ 2= m Un

m, n = I, 2, 3, ........

where eigenvalues are obtained by applying the four

homogeneous boundary conditions at x = i h and y = ± k in

eq(C-12b). Applying the boundary condition (C-12a) at top

boundary

wT(x,y,l) = Wl(X,y)

E E Amn sinh2_mnl sinlm(X+h) sin_n(Y+k)
m=l n=l

(C-20)

The coefficients Amn can then be obtained by invoking
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the orthogonality condition of sine series, i.e.,

k h
I

Amn : hk sin_2Ymnl $ f-k -h
Wl(X,y)sinkm(X+h)sin_n(Y+k)dxdy

-cl
e

: sinh_'_mnl ( aTlemn I + aT2emn2 + aT3k Zmn 3 +

aT4h emn 4 + aT5emn5 + aT6emn 6 + aT7h emn 7 +

aT8k emn 8 + aT9hk emn 9)
(C-21)

where

1

emn I :

k h

I f e-Ax-BYsink (x+h)sin_n(Y+k) dxdy
-k -h m

k h
1

emn 2 :_-_ f f
-k -h

(eAX_e-A×)(eBY_e-BY)sin_(x+h)_

sin_n(Y+k) dxdy

k h
1

emn 3 : hk_ f f-k -h

k h
i

emn _ : h_kk f f-k -h

1 k h

e,nnS f f
-k -h

k h
1

emn6 hk -k -h

k h
: 1 I f

emn7 _ -k -h

(eAX-e-AX)ye-BYsin_(x+h)sin_n(Y+k)dxdy

(eBY-e-BY)xe-AXsinkm(X+h)sin_n(Y+k)dxdy

e-BY(eAX-e-AX)sin_(x÷h)sinUn(Y+k) dxdy

-AX(eBY-e-BY)sin_(x+h)sinun(Y÷k) dxdy

e'BY(xe-AX)sinAm(X+h)sin_n(Y÷k) dxdy
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k h
= i

emn8 _ $ [-k -h
e-AX(ye-BY)sinlm(X+h)sin_n(Y+k) dxdy

i k h -Ax) (ye-BY)sinXm(X+h)sinPn(Y+k)dxdy
emn9 :h2k 2 I-k /-h (xe

When the local analytic solution (C-20) is evaluated

at an interior node P located at the center of the

rectangular local element, it gives an algebraic equation

relating the interior nodal value to its neighboring

nodal values at top boundary surface as

T T
Wp = w (0,0,0)

Since

: E E Amn sinhYmnl sinX h sinunk (C-22)
m:l n:l m

0 , m:2p
mw

sinXmh = sin T :
-(-i) p , m = 2p-I

p: i, 2, 3,...

n_
sin_nk : sin -2- =

0 , n : 2q

-(-1) q , n = 2q-1
q: i, 2, 3,...

Eq(C-22) can be further simplified by letting m : 2p-i and

n = 2q-l, such that

_T T
¢p : wp = E E

p:l q=l
(-i) p÷q Apq sinh_pql

(C-23)
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-CI + + aT3 k e +

=_( aTlepq I aT2epq2 pq3
Apq sz pq

+ aT7 h epq7 +

aT_h epq_ + aT5epq5

aT8 k epq8

+ aT6epq6

+ aT9 hk epqg)

(C-23a)

By performing a set of integrations similar to e0m,

shown in Appendix B as follOWS
and e2m

h Ax sin Xp(X+h) dx
i

e0xp = _ [ e-h

h -Ah)
= _ (eAh+e

(Ah) +(Xph)

elxp

(C-2.a)

h -Ax sinXp(X+h) dxi f xe

(eAh+e_Ah)-
= (A p

(C-24b)

h -Ax sinXp(X+h) dx= I f e
e2xp h -h

X h (eAh÷e-Ah) : e0xp

i [k eBY sin_q(y+k) dy
e0yq : k -k

-Bk)
_qk _ (eBk+e

(Bk)2+(_q k)

(C-2_c)

(C-2_d)
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k
I / ye-BY

elyq = k-'E -k sinpq(y+k) dy

2Bk pqk eBk Bk _q k(eBk-e-Bk)( +e- ) +

[(Bk)2+(_qk)2] 2 (Bk)2+(pqk) 2
(C-2_e)

where

k

-By sinpq(y+k
i I e ) dy

e2yq = k -k = e0yq

I

kph = (p - _)_ , _qk : (q - ½)_

(C-2_f)

The double integrations epq I, epq 2 etc. can then be

expressed in terms of the products of e0, e I and e 2 in x

and y direction respectively, i.e.,

epq I = e2xpe2y q
(eAh+e-Ah)(e Bk e-Bk)(_hl)(_k)

[(Ah)2+(kph)_][(Bk)2+(_qk) ]

epq2

epq3

: (e2xp-e0xp)(e2yq-e0yq) : 0

: (e2xp-e0xp) ely q : 0

epq 4 = (e2yq-eoy q) elx p = 0

= : 0
epq5 (e2xp-eOxp) e2yq

epg 6 : (e2yq-eoy q) e2x p : 0

epq7

2Ah(eAh+e-Ah)(eBk+e-Bk)(A h)(_qk)

[(Ah)2+(Aph)2]2[(Bk)2+(pqk) 2]
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(eAh-e-Ah)(eBk+e-Bk)(l h)(pqk)
P , - =

[(Ah)T+ (Xph) 2] [ (Bk) 2+(Uqk) 2 ]

2Bk(eAh+e-Ah)(eBk+e-Bk)( X h)(_k)
.P

[ (Ah) 2+(Aph) 2 ][(Bk) 2+(_qk) 2 ]2

elxpe2yq

3_

epq 9 =

h)(_qk)(eAh+e-Ah)(eBk-e-Bk)(Ip

[(Ah)2+(Iph)2][(Bk)2+(_qk) 2 ]
elyqe2xp

4AhBk(eAh+e -Ah) (eBk+e -Bk) (Xph) (_qk)

[(Ah)2+( Iph)2 ]2 [(Bk)2+(Uqk) 2 ]2

2Ah(eAh+e-Ah)(eBk-e-Bk)(Iph)(_qk)

[(Ah)2+(t h)2]2[(Bk)2+(_qk) 2]P

2Bk(eAh_e-Ah)(eBk+e -Bk
)(Xph)(Uqk) +

[(Ah)_+(X h)2][(Bk)2+( )2]2
P Uqk

(eAh-e-Ah)(eBk-e-Bk)(xph)(_q k) =

[(Ah)2÷(A h)2][(Bk)2+(_qk) 2]
P

elxpelyq

The local analytic algebraic equation (C-23) can

hence be simplified as

-Cl _ _ (-i) p+q

_ : e E E 2coshypql (aTlepql ÷ aT7h ep:l q:l pq7

÷

+ aT9hk e )aT8k epq8 pq9
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-CI eAh+e-Ah) eBk÷e-Bk z
= e { aTl ( ( )Ell

Ah
÷ (aT7h)[2Ah(e

+e-Ah)(eBk÷e-Bk)E z
21

"]+.. (eAh_e -Ah) (eBk+e-Bk)Ell

(aT8k)[2Bk(eAh+e-Ah)(eBk+e-Bk)E:2 - (eAh+e-Ah),

-Bk__z ] + (aT9hk)[4AhBk(eAh+e-Ah)(eBk+(eBk-e "_II

z _ 2Bk(eBk+
e-Bk)E22Z _ 2Ah(eAh+e-Ah)(eBk_e-Bk)E21

-Bk - -e )El1] }e )(eAh_e-Ah)E_2 + (eAh e-Ah)(eBk -Bk z

(C-25)

where

13

_ (-l)P+q(Xph)(_gk)

E E (Uqk)2]_coshyp qp=l q=l 2[(Ah)2+(Aph)2]i[(Bk) 2+ 1

i, _ : 1,2 (C-25a)

Substituting aTl, at7, at8 and at9 obtained from

eq(C-9) into eqtC-25), the finite analytic algebraic

equation becomes

~T z )_TC + [2coshAh _TC-: e -CI { (_coshAh coshBk Ell

Z

(e-Ah_EcT+eAh_wcT)] (qAh cothAh coshBk E21 -

zI) + [2coshBk_T C (e-Bk_NcT÷eBk_scT)]*2coshBk E 1

Z

(_Bk cothBk coshAh El2
Z

- 2coshAh Ell
) ÷

[e-Ah-Bk_NET+eAh-Bk_NwT+e'Ah+Bk_sET÷eAh÷Bk_swT +
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4coshAh coshBk OTC - 2c°shAh(e-BkONcT+eBk¢scT) -

2coshBk(e-AhOEcT+eAh_wcT)] ( BAhBk cothAh cothBk _

z - 2Bk cothBk El2 + EllE22 - 2Ah cothAh EZ21 z z )}

Z

z z - 2Bk cothBk El2 += (Ell -2Ah cothAh E21

z )(e-Ah-Bk-CI_E T +gAhBk cothAh cothBk E22

eAh-Bk-CI_w T + e-Ah+Bk-CI$sET +
Ah+Bk-CI

e SSWT )

Z Z

+ 4Ah coshAh cothAh(E21-2Bk cothBk E22) *

_NCT+eBk C1 z(e -Bk-cI_ - ¢SCT ) + _Bk coshBk cothBk(El2

Z

- 2Ah cothAh E22 )(e -Ah-CI SECT+eAh-CISwcT ) +

z )e-Cl ~
(16AhBk coshAh coshBk cothAh cothBk E22 OTC

(C-26a)

.E wSimilarly, the finite analytic solutions sB, Op, $ ,

_N ~S
#p and Sp of Problem (II)-(VI) can be obtained in terms of

the nodal values on the bottom, east, west, north and

south boundary respectively.

-B z z z +_AhBk cothAh *
Op : (Ell-2Ah cothAh E21-2Bk oothBk El2

z )(e
cothBk E22

-Ah-Bk+CI ~ -
ONEB+e Ah Bk+CIONwB+

e-Ah÷Bk+CI~¢sEB+eAh+Bk+CI¢swB) + _Ah coshAh cothAh _
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z 2Bk cothBk E_2)(e-Bk+CI_NcB+eBk+CI#scT) +(E2] .-

 o hBk  othBkC  2-2Ah cothAh E 2)C -Ah+C1% CB

+eAh÷CI_/CB) + (16AhBk eoshAh coshBk cothAh eothBk

z (C-26b)E22)eCI_Bc

x x x ÷4BkCI oothBk _= (EII-2Bk cothBk E21-2CI cothCl El2

cothCl E22x)(e-Ah-Bk-CI_NET+e-Ah+Bk+CI _SET+

e-Ah-Bk+CI_NEB+e-Ah+Bk+CI_sE B) + _Bk coshBk co%hBk

(E21_x 2CI cothCl E22x )(e-Ah-CI_EcT+e-Ah+CI_EcB ) +

x )(e-Ah-Bk_NEC4CI coshCl coThCl(E_2-2Bk cothBk E22

+e-Ah+Bk_sEC) + (16BkCI coshBk coshCl co%hBk co%hCl

x )e-Ah
E22 %EC (C-26c)

x -2CI cothCl E_2+_BkCI cothBk __ =(E_I-2Bk cothBk E21

cothCl E_2)(eAh-Bk'CI_ +Bk "~NWT÷e Ah -Ci#sw T +

Ah-Bk+CI ~ . Ah+Bk+Cl_ ,
e _NWB_e _SWB ) + 4Bk coshBk cothBk _

x )(eAh-Cl_(E_I-2CI cothCl E22 ,WCT+eAh÷CI_wcB) +

x _ Ah-Bk_NwC +WCI coshCl cothCl(El2-2Bk cothBk E 2)(e
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Ah+Bk¢swc )e + (16BkCI eoshBk coshCl cothBk cothCl

x ) eAh (C-26d)E22 _WC

~N
Cp : (E_I-2Ah cothAh E_2-2CI cothCl E_I+hAhCI cothAh*

cothCl E_2)(e-Ah-Bk-CI~¢NET + eAh-Bk-CI_NwT +

e-Ah-Bk+CI_NEB+eAh-Bk+CI_¢NWB )"+ 4Ah coshAh cothAh

+ +CI#NcB) +(_-2cl oothCl E_2)(e-_k-Cl%NC _ -Bk

.cl oo_hCl 0othCl(E_l-2n, oothAh E_2)(e-Ah-Bk_NEc

,eAh-Bk~
CNWC ) + (16AhCl coshAh coshCl cothAh cothCl

E_2) e-Bk_N C (C-26e)

cothCl E_2)(e-Ah+Bk-CI$sET + eAh+Bk-CI¢swT +

-Ah+Bk+CI¢sEB+eAh+Bk+CI~ ) + 4Ah coshAh cothAhe ¢SWB

e ¢SCT+eBk+CI_sc B) +(E 2-2c  o hcl Bk-Cl-

4CI coshCl cothCl(E_l-2Ah cothAh E_2)(e -Ah+Bk~ ¢SEC

+eAh+Bk¢swc) + (16AhCl coshAh coshCl cothAh cothCl

E_2) eBk"¢SC (C-26f)



c
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I

3q9

(1)q+r(p_k)(6rl)
= = i ., • ,

E E - 2 pqk)2_[(Cl)2+(6rl)q:l r:l 2[(Bk) +(

E_j : E E
p:l r:l

2 ]_ cosh yq_h

(_l)P+r(). h)(8rl)

i, _ : i, 2

and

6rl : (P - _)

7qr /_+B2 +c2 + 2 62-: _q+ r

= /A 2+B2+c 2+x2+ 2
_pr P 6r

The finite analytic algebraic equation for the

homogeneous convective transport equation (C-8) with

exponential and linear boundary condition (C-9) etc. is

then obtained by superimposed the six solutions (C-25a) -

(C-26f) of the linea_ problem (I) -(VI).

Y zI) -2Bk cothBkx y z 2Ah cothAh(EI2+E2
+(Ell+Ell+Ell ) -

z + WBkCI _

x z2) + BAhBk cothAh cothBk E2o(E21+EI

x + BAhCI cothAh cothCl E_2] *
cothBk cothCl E22

(e-Ah-Bk-CI_NET + eAh'Bk'CI_Nw T + e'Ah+Bk'CI_sE T

Ah-Bk+Cl
-Ah-Bk+CI_NEB + e _NWB

+ eAh+Bk'CI_swT + e
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+ e-Ah+Bk+CI_sEB + eAH+BK+CL$swB) + 4Ah coshAh _

z

cothAh [ (EYl2 + E_I) - 2Bk cothBk E22 -

Bk-Cl ~ -Bk-CI _NCT2CI cothCl EY 2 ] (e _SCT + e +

eBk+CI_scB + e-Bk+CI_NcB) + qBk coshBk cothBk *

z x ]
[(E2Ix + El2z ) _ 2Ah cothAh E22 -2CI cothCl E22

(eAh-CI_wcT + e-Ah-CISEcT + eAh+CISwcB + e -Ah+CI_EcB )

x + EYl) - 2Ah cothAh EY 2+ 4CI coshCl cothCl [ (El2

x -Ah-BkSNEC -Ah+Bk- 2Bk cothBk E22)(e + e _SEC

+ eAh- ~ Ah+ ~BkCNwC + e Bk¢swc) + (16AhBk coshAh coshBk

z ) (e-Cl$ + eCl$ ) + (16BkCI *
eothAh cothBk E22 TC BC

x -Ah +
coshBk coshCl eothBk cothCl E22 ) (e _EC

eAh_wc ) + (16AhCl coshAh cothAh cothAh cothCl E_2)

(e-Bk_N C + eBkSs C) (C-27)

Define

Yl zEA = E 2+E21 ,
x + z

EB = E21 EI2, xEC = El2 I

FA = 2Ah cothAh (EA),

FC = 2CI cothCl _ EC)

FB = 2Bk cothBk (EB)



OF pOOR Q_3_L_"Y 751

and

GA :

GB :

GC :

P =

QA =

QB =

Qc :

RA :

RB :

RC :

X

WBkCI cothBk cothCl E2_

WAhCI cothAh cothCl E_2

mZ
4AhBk cothAh cothBk _22

I z ) - FA- FB- FC +GA+GB + GC(E 1 + E 1 + Ell

2coshAh(FA- GB -GC)

2coshBk(FB - GA - GC)

2coshCl(FC- GA -GB)

4coshBk coshCI(GA)

qcoshAh coshCI(GB)

WcoshAh coshBk(GC)

Then the 27-point finite analytic formula (C-27) can

be summarized as follows

Cp

where the

CNET_NE T + CNWTCNWT + CSET¢SE T + CSWT¢SW T + CNEBCNE B +

CNWBCNW B + CSEB¢SE B + CSWB¢SW B + C$CT¢SC T + CNCTCNC T +

CSCB%SC B + CNCB%NC B + CWCT%WC T + CECT%EC T + CWCB%WC B +

CEes%ECB + CNWC%_WC + eNEC%NEC + CSWC%SWC + esze%s_c +

CEC%EC + CWC%WC + CNC$NC ÷ Cse$sc + cTe_Tc + CBC%BC

25

E CnbCnb
i

subscript

(C-28)

(C-28a)

"nb" denetes the neighboring nodal
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points to node P, and the FA coefficients Cnb are given in

the following

-Ah-Bk-CI Ah-Bk-CI
CNE T = e P _ CNW T = e P

-Ah+Bk-CI Ah+Bk-CI
CSE T = e P _ CSW T = e P

-Ah-Bk+CI Ah-Bk+CI
CNE B = e P , CNW B = e P

-Ah+Bk+CI Ah+Bk+Cl
CSE B = e P _ CSW B = e P

CSC T = eBk-cl (QA) , CNC T = e-Bk'cl (QA)_

CSC B = eBk+cl (QA) , CNC B = e-Bk+CI (QA),

CWC T = eAh-CI (QB) , CEC T = e -Ah'CI (QB),

Ah+CI -Ah+Cl
Cwc B = e (QB) , CEC B = e (QB),

Ah-Bk -Ah-Bk
CNW C = e (QC) , CNE C = e (QC),

= eAh+Bk (QC) , -Ah+Bk
CSW c CSE C = e (QC),

-Ah
CEC = e (RA)

= eAh
, CWC (RA) ,

-Bk
CNC = e (RB) , CSC = eBk (RB) ,

-Cl (RC) , CBC = e C1 (RC)
CTC : e

There are 12 double series summation terms Ex Ey.
lj' lj

and E_, i, _ = I, 2 nee4 to be evaluated in the calcu-

lation of the 27-point FA formula (C-28). However, analytic
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expressions similar to those derived in Appendix B may be

employed to reduce the numerical calculations needed.

2Ax
It is known that % : I, ¢ : B×-Ay, % : Cx-Az, % : e

etc. are particular solutions of eq(C-8), and all of them

can be adequately represented by the exponential and

J

linear boundary functions on six boundary surfaces. Thus,

the FA alEebraic equation (C-28) should recover all these

exact solutions in the following manner.

(a) _ : 1

Since $ =i satisfies the convective transport equation

(C-8) and can be represented by exponential and linear

boundary functions with six nonzero coefficients aTl : aBl

: aEl : awl : aNl : aSl : i, it should satisfies the algebraic

equation (C-28) also. By substituting this exact solution

x + E[ + zinto eq(C-28), an analytic expression of Eli 1 Eli can

then be obtained

@p : 1 : 8coshAh coshBk coshCl P + #coshBk coshCl (QA) +

#coshAh coshCl (QB) + 4coshAh coshBk (QC) +

2coshAh (RA) + 2coshBK (RB) + 2coshCl (RC)

x [ 1 + z: 8coshAh coshBk coshCl { [(Ell + E Ell) - FA-

FB - FC ÷ GA + GB ÷ GC] + (FA- GB- GC) + (FB - GA-

GC) + (FC-GA-GB) + GA + GB + GC }

x _ + z ): 8coshAh coshBk coshCl (Eli + E 1 Ell

hence



ORIGINAL PAGE lgl'

OF POOR QUALITY 354

x z 1Ell + E 1 + Ell : 8coshAh coshBk coshCl (C-29)

(b) ¢ : Bx-Ay

Since ¢ = Bx-Ay is an exact solution of eq(C-8) and

can be represented by exponential and linear boundary

functions with 12 nonzero coefficients aT7 = aB7 = aN7 =

as7 = B, aT8 = aB8 = aE8 = aw8 = -A, aEl = Bh: aWl =-Bh, aNl =

-Ak and aSl = Ak, it should satisfies the 27-point FA

formula (C-28) also. By evaluating this exact solution at

27 nodal points, eq(C-28) becomes

Cp : 0 = (Bh-Ak)(CNET+CHEc+CNEB) + (-Bh-Ak)(CNwT +

CNwc+CNwB ) + (Bh+Ak)(CsET+CsEc+CsEB) + (-Bh

+Ak)(CSwT+Cswc+CswB ) + Bh(CEcT+CEc+CEcB )

Bh(CwcT+Cwc+CwcB ) -Ak(CNcT+CNc+CNcB ) + Ak(

CScT+Csc÷CscB )

x _ E z: 2coshCl { -4Bh sinhAh coshBk [ (Ell + E 1 + ii -

FA- FB- FC + GA+ GB + GC) + (FC- GA-GB) + (FB

x
-GA-GC) + GA] + 4Ak coshAh sinhBk [ (Ell +

zE 1 + Ell- FA- FB - FC + GA ÷ GB + GC) + (FC- GA-

GB) + (FA-GB -GC) + GB] }

Applying the analytic expression (C-29), another

analytic expression can then be obtained
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k2(EB) -h2(EA) =
Ak coshAh sinhBk - Bh sinhAh coshBk

16AB cosh2Ah eosh2Bk coshCl

(C-30)

h 2 1
or EB = (_) (EA) + 16coshAh coshBk coshCl [ Bk

tanhBk

h 2 tan_Ah ]
-( k ) Ah

(C-30a)

(c) $ : Cx-Az

When the exact solution _ : Cx-Az is considered, an

analytic expression similar to eq(C-30) can be obtained as

follows

EC = (h 2 i[ ) (EA) + l--_shAh coshBk coshCl [ tanhClcl

h 2 tanhAh ] (C-31)
- ( Y ) Ah

It is noted that there are still some exact solutions,

2Ax 2Ax+2By+2Cz
for example, ¢ : Cy-Bz, _ = e , _ : e , _ :

(Bx-Ay)e 2Cz etc. may be employed, however, the results are

either linearly dependent to or the same as eq(C-29) thru

×
(C-31). Thus, there are still _ series summations EA, E22,

z needed to be evaluated numerically.E_2 and E22

When the unsteady 3D convective transport equation is

considered, a 28-point FA formula will be resulted by

substituting eq(C-7) into eq(C-28a), i.e.,

26 AXnb + BYnb + CZnb

: : E C [ ¢nb÷ BY C 2 g ]CP _P 1 "nb 2(A 2 + + )
(C-32)
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r
where (Xnb, Ynb' Znb) is the position o[ each neighborin£

node at Cartesian coordinate, and £ contains the infom-

marion from previous time step ¢_-i.

Substituting the expression of g of eq(C-Ga) into

eq(C-32), the 28-_oint FA formula for unsteady 3D

convective transport equation becomes

with

26
1 R n-i ) (C-33)

CP = " R - ( Z CnbCnb + _-CP Cp - Cpfp

] +-Cp_ 1

26 (AXnb + + )
C : - _ BYnb CZnb Cr_b (C-34a)

1

2(A2+B2+C 2)
{ Ah tanhAh + Bk tanhBk + C1 tanhCl

- !6coshAh cosh}_k coshCl [ (Ah) 2(EA) + (Bk)2(EB)

÷ (Cl) (EC) ] } (C-34b)

C-2 Finite Analytic Formulation of Unsteady
3D Convective Transport Equation in a

Local i:It-,_,.-entbf Nonun[formCr[_] £[_ac{T_

In previous Sec. C-I formulation, the local analytic

solution is derived in terms of the 26 boundary nodes

which are equally spaced on the boundary of the local

element of uniform £rid spacing h, k and 1 in x, y and z

direction respectively. For local element of nonuniform

grid r_,acin_ hE , hW, h N, h S, hT and h B, a simple



OmGli_AL PA_ i_
OF pOOR QUALITY

357

generalization based on FA solution for uniform grid can

be made to obtain the finite a,alytic algebraic equation.

Details of the procedures, which is a generalization of

two-dimensional case described in Appendix B, will be

outlined in the following.

Consider the case h E <hw, h N < h S and h T < h B shown

in Fig. 8(b) as an example, a smaller rectangular

parallelepiped of width 2hE, depth 2hN, height 2h T and

point P located at the center can be drawn. The same

exponential and linear interpolation function given in

Appendix B will be employed to obtain the interpolated

nodal values CNWT' CWCT etc. on smaller rectangular

element in terms of those known nodal values on larger

local element, so that the error introduced by inter-

polation will be minimized, i.e.,

CNWT = (s-I)¢NET + sCNWT ÷ (2-s-{)¢NCT

¢WCT = (s-I)¢ECT + SCWCT + (2-s'{)@TC

CNWC = (s-I)@NEC + s_NWC + (2-s-s)¢NC

CWC : (s-1)@EC ÷ SCwc + (2-s-S)¢p

¢SET = (t-I)_NET + _¢SET + (2-t-_)¢ECT

¢SCT = (t'I)#NCT ÷ _¢SCT + (2"t'_)¢TC

¢SEC = (t'I)¢NEC ÷ _¢SEC ÷ (2"t'_)¢EC

¢SC : (t'I)¢NC + _¢SC + (2-t-_)¢p
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CWCB =

¢SCB

¢ sWT :



V

3,59

+ _(t-I)_NW T + S{_SWT + s(2"t-_)¢WCT + (2-s-s)

(t-I)¢NCT ÷ (2-s-s){¢SC T + (2-s-_)(2-t-{)_TC

*
¢SWC (s-I)(t-I)¢NEC + (s-I){¢SEC + (s-I)(2-t-{)¢EC

+ _(t-I)¢NWC + _{¢SWC + _(2"t-{)¢WC + (2-s-_)

({_I)¢NC + (2_s__){¢SC + (2-s-s)(2-t-{)¢p

, : (s_l)(t_l)(r_l)¢NE T + (s_l)(t_l)_¢NE B + (s-l)
 sws

(t_l)(2-r-r)¢NEC + (s-l)(2-t-{)(r-l)¢EC T

(2_s__)(t-I)_¢NCB + (s-l)(2-t-t)(2-r-_)¢EC +

(2_s__)(t_l)(r-l)¢NCT + (2-s-s)(t-l)rCNC B +

+(2_s__)(t_l)(2-r-_)¢N C + (2-s-_)(2-t-_)(r -I)_

CTC + (2-s's)(2-_-_)rCBC + (2_s-_)(2-t-{)(2-r-

r)¢P + (s_l){(r_l)¢sE T + (s_I){_¢SEB + (s-l)t*

(2-r-_)¢SEC + _(t-l)(r-l)¢NW T + _(t-I)_¢NW B +

_(t_l)(2-r-_)¢NW c + s{(r-l)¢sW T + s_r¢SWB +

E(2_t_E)(r_l)¢wc T + _(2_t.{)_¢WC B + _,(2-t-{)(2-

r-_)¢WC + (2-s-s){(r-l)¢sc T + (2-s-s){r_SC B +

(2.s_;){(2_r__)_SC + _{(2.___)_SWC (C-35)
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S

2Ah E -2Ah E

hw(e + e -2) h E

2Ah'E 1 -2Ahw 1 ' _ = s _WW
hw(e - ) + hE(e - )

t

2Bh N -2Bh N

hs(e + e - 2) h__N_N

2BhN 1) -2Bhs ' _ = t hs
hs(e - + hN(e -i)

r 4

2Ch T -2Ch T

hB(e + e - 2) h T

_ChT _2Ch B , r = r hB

hB(e -I) + hT(e -I)

360

After the interpolated nodal values on the smaller

rectangular element are found, the 28-point FA formula

(C-33) for unsteady 3D convective transport equation can

then be applied to this smaller element.

26 _ R n-i
I ( E Cnb + Cp -Cpf "CP = ¢P : R Cnb _ CP p'

1 * -Cp 1T

(C-36)

with ¢ = ¢ at nodal points NET_ NEC, ECT, EC, NOT, N0, TC

and P.

Substituting the interpolated nodal values in eq(C-35)

into eq(C-36), a FA formula relating the interior nodal

value Cp to its neighboring nodal values at 26 boundary

nodes which are unequally spaced on the larger rectangular

element can then be obtained.
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26 R n-i _ bpfp) (C-37)
1 ( E bnb¢nb + - b_ CpT

where

G : 1 - (2-s-_)Cwc - (2-Z'{)Csc - (2-r'_)CBc - (2-s-

_)(2-t-{)Cswc _ (2.s__)(2_r__)CwcB _ (2-t-{)(2-r-

_ (2_s-_)(2-t-E)(2-r-r)CswB
_)Csc B

bNE T = CNE T + (B-I)CNw T + (t-l)CsE T ÷ (r-I)CNE B +

(s_I)(t-I)Csw T + (s-I)(r-I)CNw B + (t-l)(r-l) e

CSE B + (s-l)(t-1)(r-l)Csw B

bEc T = CEC T + (s-I)Cwc T + (2-t-{)CsE T + (r-I)CEc B +

(s-I)(r-I)CwcB + (2_t__)(r_I)CsEB + (s-l)(2-t-

_)Csw T + (s-I)(2-t-{)(_-I)CswB

bNc T : CNC T + (2-s-s)C_w T + (t-I)Csc T + (r-I)CNc B ÷

(2-s-s)(t-I)CswT + (2_s__)(r_I)CNwB + (t-l)(r-

I)Csc B + (2-s-_)(t-l)(r-l)CswB

+ (2-r-_)CNE B +

bNE C = CNE C + (s-I)CNw C ÷ (t-1)CsE C

(s-I)(t-I)Cswc + (s_I)(2_r__)CNwB ÷ (t-l)(2-_-

bEc

_)CsE B + (s-l)(t-l)(2-_-{)Csw B

= CEC + (s-I)Cwc + (2-t-{)CsE C + (2-r-_)CEc B

+ (s-I)(2-r-_)Cwc B + (2-t-{) a
(s-l)(2-t-{)CSW C
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(2-r-_) CSEB + (s-l) (2-t-{) (2-r'_) CSWB

: CNC + (t-l)Csc + (2-S-S)CNwc + (2-r-_)CNCB +

+ (t-I)(2-r'r)CscB + (2-s-s) e

(2-s-_) (t"l) Cswc

(2_r__)CNw B + (2_s-._)(t -I)(2-r'_r)CSWB

: CTC + (r-I-)CBc + (2-s-s)CwcT + (2-t-{)CscT +

(2_s__)(r_I)CwcB + (2-t-_,)(r-I)CscB + (2-s-s) a

(2_t_{)Csw T + (2_s-s)(2 -t-{)(r-I)CSWB

bNW T = _ [ CNW T + (t-I)CswT + (r-I)CNwB + (t-l)(r -I)*

CSWB] (t-Z) (2-r-

bNW C = _ [ CNW C + (t-I)Csw C + (2-r-r)CNwB +

_)Cs WB] + (2-t-{) (r

bWC T : _ [ CWC T + (2-t-{)CswT + (r-I)CwCB

-I)CswB ]

bwc : _ [ CWC + (2-t-_)Cswc + (2-r-_)CwcB + (2-t-rc) '_

(?-r-_)CswB ]

bsE T : _ [ CSET + (s-I)CswT + (r-l)CsEB + (s-l)(r -I)_

CsWB ] + (S-i) (2-r-
+ (2-r-_) CSEB

+ (_-I)Csw C
bSE C : t [ CSE C

_)CSWB ]

1
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bSC T = _ [ CsCT + (2-s-s)CSWT

bSC

+ (r-l)Csc B + (2-s-s) (r

-l) CsWB 3

+ (2-s-s)Cswc ÷ (2-m-_)CscB + (Z-s-s) _
= _[Csc

(2-r-_)CswB ]
+ (s-l)(t -I)_

+ (B-I)CNw B + (t-I)CsE B

bNE B = _ [ CNE B

CsWB ] . + (s-l)(2-t-

bEc B = _ [ CEC B + (B-I)Cwc B + (2-t-{)_SEB

_)csws ]

bNC B = _ [ CNC B + (2-s-S)CNwB + (t-I)CscB + (2-s-s) _

(t-I)CswB ]

bBC = _ [ CBC + (2-s-s)CwcB + (2-t-{)CscB + (2-s-s) _

(2-t-_)CswB ]

-- _ (s-I)CswB ]
bSEB = tr [ CSE B

.- + (2-s-s)CswB ]

bSCB = tr [ CSC B

.- + (t-I)CswB ]

bNWB = sr [ C_WB

_- + (2-t-{)CswB ]

bWCB = sr [ CwCB

bSW T = {{ [ CSW T + (r-I)CswB ]

bsw c = _{ [ Cswc + (2-r-_)CswB ]

bsw B = E{_Csw B

bp : Cp
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Where the FA coefficients Cnb are given in eq(C-28) with

h = hE, k = hN and 1 = hT.

For the cases h E > hW, hN > h S etc., the finite analytic

solution (C-37) can still be used by simply opposite the

flow directions and rearrange the indices of nodal points.

Details can be found from computer programs given in

Appendix D.
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APPENDIX D

COMPUTER PROGRAMS

Computer Program For SolvinK Unsteady
Two-Dimension_l Fiuid Flow Problems

Using'Vortici_y-Streamfunction
Formulation

DEVELOPMENT OF FINITE ANALYTIC METOD FOR UNSTEADY

TWO-DIMENSIONAL CONVECTIVE TRANSPORT EQUATIONS
******************************************************

BY CHEN,HAMN-CHING
UNIVERSITY OF IOWA
******************************************************

TEST PROBLEM : DEVELOPMENT OF VORTEX STREET BEHIND A

RECTANGULAR BLOCK
******************************************************

INSERT SYSCOM>ERRD.F

INSERT SYSCOM>KEYS.F

INSERT SYSCOM>ASKEYS

IMPLICIT REAL*8(A-H,O-Z)
COMMON/ABCI/PSIN(48,37),ZETAN(%8,37,2)

COMMON/ABC2/U(48,37),V(48,37),HX(%8),HY(48)

COMMON/ABC3/F(48,37),D

COMMON/ABC4/PSINO(48,37),ZETANO(48,37)

COMMON/COEFA/CMP(%8,37),CNP(48,37),CPP(%8,37)

COMMON/COEFB/CMN(%8,37),CNN(48
COMMON/COEFC/CMM(48,37),CNM(48

COMMON/EOEFA/EMP(48,37},ENP(48

COMMON/EOEFB/EMN(48,37),ENN(48

COMMON/EOEFC/EMM(48,37),ENM(48

COMMON/COEFI/CF(3,3)
CALL SRCH$$(K$READ,'A500',4,7,

CALL SRCH$$(KSWRIT,'CS00',%,2,
IXMAX=%8

IY_=37

IXMI=IXMAX-I

IYMI=IYMAX-I

,37),CPN(48,37)
,37),CPM(48,37)
,37),EPP(48,37)
,37),EPN(48,37)
,37),EPM(%8,37)

TYPE,CODE)

TYPE,CODE)
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L

C

C 30

C

C 31

C

C 32

C

C 33

C

C 34

C

C 35

C

C 36

5O

C

C
C

C

C

IXF=6

IXR=7
IYL=I5

IYU=23

IXFMI=IXF- 1
IXFPI=IXF+ 1

IXRMI=IXR- 1
IXRPI=IXR+ 1

IYLMI=IYL- 1
IYLPI=IYL+I

IYUMI=IYU- 1

IYUPI=IYU+I

ITERP=50

ITERZ=20

IEND=IO0
NM=2

EPE=0. 0001

D IFFMP=0. 00001

D IFFMZ=0 .00001

RFP=I. 6

TAU=0 .2
RE=500.

D=RE/TAU

DO 30 IX=2,4

HX(IX)=0.5

DO 31 IX=5,18

HX(IX)=O. 25
DO 32 IX=19,28

I-LX(IX)=O. 5
DO 33 IX=29,48

HX(IX)=0.8

DO 34 IY=2,3

HY(IY)=O. 5
DO 35 IY=4,35

HI'(IY)=O. 125

DO 36 IY=36,37

HY( IY)=O. 5

READ(II, S0) (HX(IX), IX-2, IXMAX)

READ(II, 50) (HY(IY), IY=2, IYMAX)
WR ITE (6,50 )RE, TAU

WRITE(6, 50) (HX(IX), IX=2, IXMAX)

WRITE(6,50) (HY(IY), IY=2, IYMAX)
FORMAT (//5X, 6F8.4 )

DO I00 IX=I,IXMAX

DO I00 IY=I,IYMAX

C._
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100
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104

122
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125
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ZETAN(IX, IY, I)=O.

ZETAN (IX, IY, 2 )=O.
U(IX, IY)=O.

V(IX, IY)=O.
F(IX, IY)=O.

PSIN(IX, IY)=O.

DO 102 IX=I,IXMAX

PSIN(IX, I)=-3.
PSIN(IX, IYMAX)=3.

U(IX,1)=I.
u(IX, IYMAX)=I.
DO 103 IY=I,IYMAX

U(I, IY)=I.
Y=-3.

DO 104 IY=I,IYMAX

Y=Y+HY(IY)

PSIN(I,IY)=Y
DO 122 IY=I,IYMAX

READ(II,1350)(PSIN(IX, IY),IX=I, IXMAX)
DO 123 IY=I, IYMAX

READ(II,1350)(ZETAN(IX, IY, I),IX=I,IXMAX)
DO 125 IX=I, IXMAX
DO 125 IY=I, IYMAX

ZETAN(IX, IY,2)=ZETAN(IX, IY, I)

DO 150 IX=2,1XJM1
DO 150 IY=2,IYM1

IF(IX.GE.IXF.AND. IX.LE.IXR.AND. IY.GE.IYL.AND.IY.LE.
IIYU) GO TO 150

HE=HX(IX+I)

HW=HX(IX)

HN=HY(IY+I)

HS=HY(IY)

CALL COEFF2(0.,O.,HE,HW,HN,HS)
EMM(IX, IY)=CF(I,I)
EMN(IX, IY)=CF(I,2)

EMP(IX, IY)=CF(I,3)

ENM(IX, IY)=CF(2,1)

ENN(IX, IY)=CF(2,2)

ENP(IX, IY)=CF(2,3)

EPM(IX, IY)=CF(3,1)

EPN(IX, IY)=CF(3,2)
EPP(IX, IY)=CF(3,3)
CONTINUE

MM=0
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RETURN POINT OF MARCHING PROCESS

DO 1200 IT=I,IEND
MM=MM+I

CALCULATION OF STREAMFUNCTIONS FOR FIELD POINTS
****************************************************

DO 155 ITER=I,ITERP
DIFFM=O.

DO 161 IX=2,IXMI

IF(IX.GE.IXF.AND.IX.LE. IXR)GO TO 156

CALL PSINA(2,1YMI,IX)
GO TO 160

156 CALL PSINA(2,1YLMI, IX)

CALL PSINA(IYIIPI,I_I,IX)
160 DO 161 IY=2,IYMI

DIFF=DABS(PSIN(IX, IY)-PSINO(IX, IY))

IF(DIFF.GT.DIFFM) DIFFM=DIFF

PSIN(IX, IY)=PSINO(IX, IY)÷RFP*(PSIN(IX, IY)-PSINO(IXoIY))

161PSINO(IX, IY)=PSIN(IX, IY)
IF(DIFFM.LT.DIFFMP) GO TO 163

155 CONTINUE

163 WRITE(6,166)ITER, DIFFM
166 FORMAT(5X,'NO. OF ITERATIONS FOR PSIN=',I5,5X,

I'DMAXP=',EI2.4)
DO 157 IY=2,IYMI

]57 PSIN(IXMAX, IY)=PSIN(IXMI, IY)

DO 175 IX=2,1XM1
DO 175 IY=2,IYMI

IF(IX.GE.IXF.AND.IX.LE. IXR.AND.IY.GE. IYL.AND. IY.LE.
IIYU) GO TO 175

HE=HX(IX÷I)

HW=HX(IX)

HN=HY(IY÷I)

HS=HY(IY)

U(IX, IY)=(HStHS*(PSIN(IX, IY÷I)-PSIN(IX, IY))-HN*HN *

I(PSIN(IX, IY-I)-PSIN(IX, IY)))/HN/HS/(HN÷HS)

V(IX, IY)=(HE*HE*(PSIN(IX-I,IY_-PSIN(IX, IY))-HW*HW*

I(PSIN(IX÷I,IY)-PSIN(IX, IY)))/HE/HW/(HE÷HW)
175 CONTINUE
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DO 176 IY=2,IYMI

U(IXMAX, IY)=U(IX.MI,IY)

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR VORTICITY

DO 200 IX=2,1XMI

DO 200 IY=2,IYM1

IF(IX.GE.IXE.AND. IX.LE.IXR.AND.IY.GE.IYL.AND.IY,LE.
IIYU) GO TO 200

AR=O.5*RE*U(IX, IY)

BR=0.5*RE*V(IX, IY)

HE=HX(IX+I)

HW=HX(IX)

HN=HY(IY÷I)
HS=HY(IY)

CALL COEFF2(AR,BR. HE,HW,HN,HS)

CMM_ IX,

CMN_ IX,
CMP_ IX,

CNM_ IX,

CNNq IX,
CNPI IX,

CPM, IX,

CPN, IX,

CPP, IX. IY)=CF(3,3
CONT INUE

IY)=CF(I,I)

IY)=CF(1,2)
IY)=CF(I,3)

IY)=CF(2,1)
I¥)=CF(2,2)

IY)=CF(2,'3)

IY)=CF(3, I)
IY)=CF(3,2)

)

DO 250 IY=IYLPI, IYUMI

ZETAN(IXF, IY,2)=G.-2.*PSIN(IXFMI,IY)/HX(IXF)/HX(IXF)

ZETAN(IXR, IY,2)=0.-2.*PSIN(IXRPI,IY)/HX(IXRP1)

I/HX(IXRPI)
CONTINUE

ZETAN(IXF, IYU,2)=O.-2.*PSIN(IXFMI, IYU)/HX(IXF)/HX(IXF)

1-2.*PSIN(IXF, IYUP1)/HY(IYUP1)/HY(IYUPI)

ZETAN(IXR, IYU,2)=O.-2,*PSIN(IXRPI,IYU)/HX(IXRPI)/

1HX(IXRP1)-2.*PSIN(
ZETAN(IXF, IYL,2)=O

I-2.*PSIN(IXE, IYLMI

ZETAN(IXR, IYL,2)-0

IHX(IXRPI)-2.*PSIN(

IXR. IYtnPI)/HY(IYUPI)/'_Y(ZYUPI)
.-2.*PSIN(IXFMI,IYL)/HX(IXF)/HX(IXF)
)/I-IY(IYL)/IiY(IYL)
.-2.*PSIN(IXRPI,IYL)/HX(IXRPI)/
IXR, IYLM1)/HY(IYL)/HY(IYL)

o,eoe,Qeee,eeeee#t,ee,eeeeee,eeteee,tee%,eeeee,,e%,%

CALCULATION OF VORTICITY FOR FIELD POINTS USING

VORTICITY TRANSPORT EQUATION
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DO 305 ITER=I,ITERZ
DIFFM=O.

DO 311 IX=2,1XM1

IF(IX.GE. IXF.AND. IX.LE.IXR)GO TO 306

CALL ZETANA(2,1YMI,IX)
GO TO 310

306 CALL ZETANA(2,1YLMI, IX)

CALL ZETANA(IYUPI,IYMI,IX)
310 DO 311 IY=2,1YMI

DIFF=DAB$(ZETAN(IX, IY,2)-ZETANO(IX, IY))

IF(DTFF.GT.DIFFM) DIFFM=DIFF
311ZETANO(IX, IY)=ZETAN(IX, IY,2)

IF(DIFFH.LT.DIFFMZ) GO TO 313
305 CONTINUE

313 WRITE(6,316) ITER,DIFFM

316 FORMAT(SX,'NO OF ITERATIONS FOR ZETAN ='

I'DMAXZ=',EI2.q)
DO 307 IY-£,IYMI

307 ZETAN(IXMAX,TY,2)=ZETAN(IXMI,IYo2)
DO 500 IX=I,IXMAX

DO 500 IY::I,IYMAX

500 ZETAN(IX. IY, I)=ZETAN(IX, IY,2)

IF(MM.LT.NM) GO TO 999
MM=O

WRITE(6,6OO)IT
600 FORMAT(//SX,'NO, OF TIME STEPS =',15)

DO 700 IY=I,IYMAX

700 WRITE(6,1350)(PSIN(IX, IY),IX=I,IXMAX)
DO 800 IY=I,I_

800 WRITE(6,1350)(ZETAN(IX, IY,2),IX=I.IXMAX)

,14,5X,

CHECK THE CIRCULATION

ggg CIRCUL=O.

DO I000 IX=2.1XMulkX

DO IOL3 IY=2,1YI_XX

IF(IX.GT.IXF.AND. IX.LE.IXR.AND.IY.GT.IYL.AMD.
IIY.LE.IYU) GO TO i000

CIRCUL=CIRCUL+(ZETAN(IX, IY,2)+ZETAN(IX, IY-I,2)+ZETAN

I(IX-I,IY,2)oZETAN(IX-I,IY-I,2))*HX(IX)*HY(IY)/4.
I000 CONTINUE

WRITE(6,1OOI)CIRCUL

1001FORMAT(//SX,'CIRCUL=',EIS.fl)

12OO CONTINUE
DO 1101 IY_I,IYI_

1101 WRITE(6,1350)(U(IX, IY),IX=I,IX_X)
DO 1102 IY-I,IY_
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WRITE(6,1350) (V( IX, IY), IX=I, IXMAX)

FORMAT( 7FII. 6)

CALL EXIT

END

****************************************************

SUBROUTINE TRIDAG TO SOLVE ALGEBBAIC EQUATIONS

SIMULTANEOUSLY FOR EACH ROW OR COLUMN
****************************************************

SUBROUTINE TRIDAG( IF, L, A, B, C, D, V)

IMPLICIT REAL*8(A-H, O-Z)

DIMENSION A(48), B(48 ), C(48), D(48), V(48), BETA(48),

BETA(IF) =B(IF)

GAMMA(IF) =D( IF)/BETA( IF )

IFPI=IF÷I

DO 1 I-IFPI, L

BETA ( I )=B ( I )- A ( I )*C ( I- 1 )/BETA ( I- 1 )

GAMMA(1) =(D( I )-A( I )*GAMMA( I- i) )/BETA( I )

V(L)=GAm_A(L)
LAST=L- IF

DO 2 K=I, LAST

I=L-K

V( I )=GAMMA(I )-C( ! )*V( I+I)/BETA( I )

RETURN

END

SUBROUTINE COEFF TO CALCULATE FINITE ANALYTIC

COEFFICIENTS
*****************************************************

2

SUBROUTINE COEFF2(AR,BR, HE,HW,HN,HS)

IMPLICIT REAL*8(A-H,O-Z)

COMMON/COEFI/CF(3,3)

PI=3.141592653589793DO

EPE=O.0001

MAX=20

JX=I

JY=I

IF(HE.LT.HW) GO TO 2
JX=-I

AR=-AR

IF(HN.LT.HS) GO TO 3

JY=-I

BR=-BR



C

C

OI_I_rNAL PAGE' _
OF POOR QUALITY

372

2O

3 IF(DABS(AR).LT.EPE)AR=DSIGN(EPE,AR)

IF(DABS(BR).LT.EPE)BR=DSIGN(EPE,BR)
HX=DMINI(HE,HW)

HY=DMINI(HN,HS)

HXI=DMAXI (HE, HW )
HYI=DMAXI (HN, HS )
AH=AR* HX

BK=BR*HY
AHI=AR*HXI

BKI=BR*HYI
AB2=AR*AR+BR*BR

SEW=HXI*(DEXP(2.*AH)-I.)+HX*(DEXP(-2.*AHI)-I.)

TNS=HYI*(DEXP(2.*BK)-I.)+HY*(DEXP(-2.*BKI)-I.)

EPAH=DEXP(-AH)
EPBK=DEXP(-BK)

COSHA=O.5*EPAH+O.5/EPAH

COSHB=O.5*EPBK+0.5/EPBK

COTHA=(I.+EPAH*EPAH)/(I.-EPAH*EPAH)

COTHB=(I.+EPBK*EPBK)/(I.-EPBK*EPBK)

IF(DABS(HE-HW).GT.EPE) MAX=30

IF(DABS(HI_-HS).GT.EPE) MAX=30
IF(HX.GT.HY)GO TO 20
EX2=0.

DO i0 I=I,MAX

ZA=(I-O.5)*PI
PWR=(-I.)**I*ZA

AB=DEXP((AB2+ZA*ZA/HX/HX)**O.5*HY)

10 EX2=EX2-2.*PWR/(AB+I./AB)/(AH*AH+ZA*ZA)**2
EY2=EX2*HX*HX/HY/HY+(1./BK/COTHB-HX*HX/HY/HY/AH/COTHA)

I/4./COSHA/COSHB
GO TO 15

EY2=0.

DO 16 I=I,MAX

ZA=(I-0.5)*PI

PWR=(--I.)**I*ZA

AB=DEXP((AB2+ZA*ZA/HY/HY)**0.5*HX)

16 EY2=EY2-2.*PWR/(AB+I./AB)/(BK*BK+ZA*ZA)**2

EX2=EY2*HY*HY/HX/HX+(I./AH/COTHA-HY*HY/HX/HX/BK/COTHB)

I/%./COSHA/COSHB

15 E=0.25/COSHA/COSHB-AH*COTHA*EX2-BK*COTHB*EY2
EA=2.*AH*COSHA*COTHA*EX2
EB=2.*BK*COSHB*COTHB*EY2

CNN=(AH/COTHA+BK/COTHB-4.*COSHA*COSHB*(AH*AH*EX2
÷÷BK*BK*EY2))/2./AB2

CNW=E/EPAH*EPBK
CNE=E*EPAH*EPBK

CSW=E/EPAH/EPBK

CSE=E*EPAH/EPBK
CNC=EA*EPBK

CSC=EA/EPBK

Y
r



C

C

C

C
C

C

C

ORIGINAL PAGE IS
OF POOR QUALITY

37 _

CWC=EB/EPAH

CEC=EB*EPAH

S= (EPAH*EPAH+ I./EPAH/EPAH-2. )*HXI/SEW
$1=S-1.

SB=S*HX/HX1
SS=I.-S1-SB

T=(EPBK*EPBK+I./EPBK/EPBK-2.)*HY1/TNS
TI=T-1.

TB=T*HY/HY1
TS=I.-TI-TB

CP=I.-SS*CWC-TS*CSC-SS*TS*CSW

CF(2+JX,2+JY)=(CNE+SI*CNW+TI*CSE+SI*TI*CSW)/CP
CF(2-JX,2+JY)=SB*(CNW+TI*CSW)/CP

CF(2+JX,2-JY)=TB*(CSE+SI*CSW)/CP
CF(2-JX,2-JY)=SB*TB*CSW/CP

CF(2+JX,2)=(CEC+SI*CWC+TS*CSE+SI*TS*CSW)/CP

CF(2-JX,2)=SB*(CWC+TS*CSW)/CP
CF(2,2+JY)=(CNC+TI*CSC+SS*CNW+TI*SS*CSW)/CP

CF(2,2-JY)=TB*(CSC+SS*CSW)/CP

CF(2,2)=CNN/CP
RETURN

END

SUBROUTINE TO CALCULATE THE STREAMFUNCTION
********************************************************

160

170

SUBROUTINE PSINA(IL, IU, IX)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION AA(48),BB(48),CC(48),DD(%8),T(48)

COMMON/ABCI/PSIN(48,37),ZETA]N(%8,37,2)

COMMON/EOEFA/EMP(48,37),ENP(48,37),EPP(48,37)

COMMON/EOEFB/EMN(48,37),ENN(48,37),EPN(48,37)

COMMON/EOEFC/E_M(48,37),ENM(48,37),EPM(48,37)

DO 160 IY=IL, IU

AA(IY)=-ENM(IX, IY)

BB(IY)=I.

CC(IY)=-ENP(IX, IY)

DD(IY)=EMM(IX, IY)*PSIN(IX-I,IY-I)÷EMP(IX, IY) *

1PSIN(IX-I,IY÷I)+EMN(IX, IY)*PSIN(IX-I,IY)+EPN(IX, IY)*

2PSIN(IX+I,IY)+EPM(IX, IY)*PSIN(IX÷I, IY-I)_EPP(IX, IY)*

3PSIN(IX+I,IY+I)÷ENN(IX, IY)*ZETAN(IX, IY,1)

DD(IL)=DD(IL)-AA(IL)*PSIN(IX,IL-I)

DD(IU)=DD(IU)-CC(IU)*PSIN(IX, IU÷I)
CALL TRIDAG(IL, IU,AA,BB,CC,DD,T)

DO 170 IY=IL,IU

PSIN(IX, IY)=T(IY)
RETURN

END
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SUBROUTINE TO CALCULATE THE VORTICITY
**************************************************

SUBROUTINE ZETANA(IL, IU,IX)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION AA(48),BB(48),CC(48),DD(#8),T(48)

COMMON/ABCI/PSIN(48,37),ZETAN(48,37,2)
COMMON/ABC2/U(48,37),V(48,37),HX(48),HY(48)

COMMON/ABC3/F(48,37),D

COMMON/COEFA/CMP(48,37),CNP(48,37),CPP(48,37)

COMMON/COEFB/CMN(48,37),CNN(48o37),CPN(48,37)
COMMON/COEFC/CMM(48,37),CNM(48,37),CPM(48,37)

DO 320 IY=IL, IU

UE=O.5*(U(IX+I,IY)+U(IX, IY))

UW=O.5*(U(IX-I,IY)÷U(IX, IY))
VN=O.5*(V(IX, IY+I)+V(IX, IY))

VS=O.5*(V(IX, IY-I)+V(IX, IY))

EPAHE=DEXP(O.25*RE*UE*HX(IX+I))

EPAHW=DEXP(0.25*RE*UW*HX(IX))

EPBHN=DEXP(0.25*RE*VN*HY(IY+I))

EPBHS=DEXP(O.25*RE*VS*HY(IY))

ZE=(ZETAN(IX, IY,2)*EPAHE+ZETAN(IX+I,IY,2)/EPAHE)

I/(EPAHE+I./EPAHE)

ZW=(ZETAN(IX-I,IY,2)*EPAHW+ZETAN(IX, IY,2)/EPAHW)

I/(EPAHW+I./EPAHW)

ZN=(ZETAN(IX, IY,2)*EPBHN÷ZETAN(IX, IY+I,2)/EPBHN)

I/(EPBHN+I./EPBHN),

ZS=(ZETAN(IX, IY-1,2)*EPBHS÷ZETAN(IX, IY,2)/EPBHS)
I/(EPBHS÷I./EPBHS)

UE=(U(IX, IY)*EPAHE÷U(IX÷I,IY)/EPAHE)/(EPAHE÷I./EPAHE)

UW=(U(IX-I, IY)*EPAHW+U(IX, IY)/EPAHW)/(EPAHW+I./EPAHW)

VN=(V(IX, IY)*EPBHN÷V(IX, IY+I)/EPBHN)/(EPBHN÷I./EPBHN)
VS=(V(IX, IY-I)*EPBHS+V(IX, IY)/EPBHS)/(EPBHS+I./EPBHS)

F(IX, IY)=2.*RE*(((UE-U(IX, IY))*ZE-(UW-U(IX, IY))*ZW)

I/(HX(IX÷I)+HX(IX))+((VN-V(IX, IY))*ZN

2-(VS-V(IX, IY))*ZS)/(HY(IY÷I)÷HY(IY)))

AA(IY)=-CNM(IX, IY)

BB(IY)=I.÷D*CNN(IX, IY)

CC('Y):-CNP(IX, IY)

320 DD( -CPN(IX, IY)*ZETAN(IX÷I,IY,2)÷CMN(IX, IY)*ZETAN

l(IX-_ Y,2)*CPP(IX, IY)*ZETAN(IX÷I,IY+I,2)÷CPM(IX, IY)

2*ZETAhiI×÷I,IY-I,2)+CMP(IX, IY)*ZETAN(IX-I,IY÷I,2)

3+CMM(IX, IY)*ZETAN(IX-I,IY-I,2)÷CNN(IX, IY)

4*(D*ZETAN(IX, IY, I)-F(IX,IY))

DD(IL)=DD(IL)-AA(IL)*ZETAN(IX, IL-I,2)
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330

DD( IU)=DD( IU)-CC(IU) *ZETAN( IX, IU*l, 2)

CALL TRIDAG( IL, IU,AA,BB, CC, DD, T)

DO 330 IY=IL, IU

ZETAN( IX, IY, 2)=T(IY)
RETURN

END

D-2 Computer Program For Solving Unsteady
Three-Dimensional Fiuid Flow Problems

U'sln_'Pr'imitive Variable Formulatlon
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***************************************************

DEVELOPMENT OF FINITE ANALYTIC METHOD FOR UNSTEADY

THREE-DIMENSIONAL CONVECTIVE TRANSPORT EQUATION

BY CHEN, HAMN-CHING
THE UNIVERSITY OF IOWA
***************************************************

TEST PROBLEM : CUBIC CAVITY FLOW

IN PRIMITIVE VARIABLE FORMULATION

$1NSERT SYSCOM>ERRD.F

$1NSERT SYSCOM>KEYS.F

$1NSERT SYSCOM>A$KEYS

IMPLICIT REAL*8(A-H,O-Z)

COMMON/ABCI/U(18,6,18),V(!8,6,18),W(18,6,18)

I8,6,18),VI(IS,6,18),WI(18,6,18)
18,6,18),V2(18,6,18),W2(18,6,18)
18,6,18),FY(18,6,18),FZ(18,6,18)
18,6,18),CV(18,6,18),CW(18,6,18)
18,6,18),PR(IB,6,18),PP(18,6,18)
18),BB(18),CC(18),DD(18),T(18)
HZ(18)

COMMON/ABC2/UI(

COMMON/ABC3/U2(

COMMON/ABC4/FX(

COMMON/ABC5/CU(
COMMON/ABC6/DS(

COMMON/ABC7/AA(

I,HX(18),HY(18),
6,18),WZ(18,6,18)

18,6,18),UPPP(18,6,18)
6,18),UNNP(18,6,18),UPNP(18,6,18)

6,18),UNMP(18,6,18),UPMP(18,6,18)

6,18),UNPN(18,6,18),UPPN(18,6,18)

6,18),UNNN(18,6,18),UPNN(18,6,18)

6,18),UNMN(18,6,18),UPMN(18,6,18)
18,6,18),UPPM(18,6,18)

18,6,18),UPNM(18,6,18)

18,6,18),UPMM(18,6,18)

18,6,18),VPPP(18,6,18)
18,6,18),VPNP(18,6,18)

COMMON/ABC8/UX(18,6,18),VY(Â8,

COMMON/AAA/CF(3,3,3)
COMMON/UCI/UMPP(18,6,18),UNPP(

COMMON/UC2/UMNP(18,

COMMON/UC3/UMMP(18,

COMMON/UC4/UMPN(18,

COMMON/UC5/UMNN(18,

COMMON/UC6/UMMN(18,
COMMON/UC7/UMPM(18,6,18),UNPM(

COMMON/_C8_(18,6,18),UNNM(

COMMON/UC9/UM_(18,6,18),UNMM(

COMMON/VCI/VMPP(18,6,18),VNPP(

COMMON/VC2_(18,6,1S),VNNP(
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42

43

COMMON/VC3/VMMP(18,6,18),VNMP(18,6,

COMMON/VC4/VMPN(18,6,18),VNPN(18,6,

COMMON/VC5/VMNN(18,6,18),VNNN(18,6,

COMMON/VC6/VM_(18,6,18),VI_(18,6,

COMMON/VC7/VMPM(18,6,18),VNPM(18,6,

COMMON/VC8/VMNM(18,6,18),VIqNM(18,6,

COMMON/VC9/VMMM(18,6,18),VNMM(18,6,

COMMON/WCI/WMPP(18,6,18),WNPP(18,6,

COMMON/WC2/WMNP(18,6,18),WNNP(18,6,

COMMON/WC3/WMMP(18,6,18),WNMP(18,6,

COMMON/WC4/WMPN(18,6,18),WNPN(18,6,

COMMON/WC5/WMNN(18,6,18),WNNN(18,6,

COMMON/WC6/WMMN(18,6,18),WNMN(18,6,

COMMON/WC7/WMPM(18,6,18),WNPM(18,6,

COMMON/WC8/WMNM(18,6,18),WNNM(18,6,

COMMON/WCg/WMMM(18,6,18),WN_(18,6,

CALL SRCH$$(KSREAD,'T400',4,7,TYPE,

CALL SRCH$$(KSWRIT,'J400',4,2,TYPE,

IXMAX=I7

IYMAX= 5

IZMAX=I7

IXPI=IXMAX+I

IYPI=IYM._X+I

IZPI=IZMAX+I

IXMI=IXMAX-I

IYMI=IYMAX-I

IZMI=IZMAX-I

IXMM=(IXMAX+I)/2
ITERP=I0

ITERU=5

ITERV=5

ITERW=5

IEND=I0

NM=5

EPE=0.0001

HX(1)=0.

HX(IXPI)=0.

HY(1)=0.

HZ(1)=0.

HZ(IZPI)=0.

DO 41 IX=2,1XMAX

HX(IX)=I./IXMI

DO 42 IY=2,1YPI

HY(IY)=0.5/IYMI

DO 43 IZ=2,1ZMAX

HZ(IZ)=I./IZMI

TAU=0.5

RE=_00.

D=RE/TAU

WRITE(6,50)RE,TAU

18),VPMP(18,6,18)

18),VPPN(18,6,18)

18),VPNN(18,6,18)

18),VPMN(18,6,18)

18),VPPM(18,6,18)

ZS),VPNM(18,6,18)
18),VPMM(18,6,18)

I8),WPPP(18,6,18)

18),WPNP(18,6,18)

18),WPMP(18,6,18)

18),WPPN(18,6,18)

18),WPNN(18,6,18)

I8),WPMN(18,6,18)

18),WPPM(18,6,18)

18),WPNM(18,6,18)

18),WPMM(18,6,18)

cODE)

CODE)



C

C

C

C
C

C

C

WRITE(6,1350)(HX(IX),IX=I,IXPI)
WRITE(6,1350)(HY(IY),IY=I, IYPI)

WRITE(6,1350)(HZ(IZ),IZ=I,IZPI)

50 FORMAT(//5X,6EI2.4)
DO 90 IX=I, IXPI

DO 90 IY=I, IYPI
DO 90 IZ=I, IZPI

U(IX, IY, IZ)=0.

V(IX, IY, IZ)=0.
W(IX, IY, IZ)=0.

DS(IX, IY, IZ)=O.

PP(IX, IY, IZ)=O.

CU(IX, IY, IZ)=O.

CV(IX, IY, IZ)=O.
CW(IX, IY, IZ)=O.

UX(IX, IY, IZ)=O.

VY(IX, IY, IZ)=O.

WZ(IX, IY, IZ)=O.
90 PR(IX, IY, IZ)=O.

*************************************************

SPECIFY THE INITIAL CONDITION
*************************************************

377

DO 123 IX=I, IX/_AX
DO 123 I?=I, IYPI

123 READ(II,1350)(U(IX, IY, IZ),IZ=I,IZPI)

DO 124 IY=I, IYMAX

DO 12% IZ=I, IZPI

124 READ(II,1350)(V(IX, IY, IZ),IX=I, IXPI)
DO 125 IZ=I,IZMAX
DO 125 IY=I,IYP1

125 READ(ll,1350)(W(IX, IY, IZ),IX=I,IXP1)

DO 126 IZ=I,IZP1

DO. 126 IY=I,IYP1

126 READ(ll,1350)(PR(IX, IY, IZ),IX=l, IXP1)

DO 127 IX=I,IXP1

DO 127 IY=I,IYP1

127 U(IX, IY,1)=I.
DO 25 IZ=I,IZPI
DO 25 IY=I IYPI

DO 25 IX=I,IMPI

UI(IX, IY, IZ)=U(IX, IY, IZ)

U2(IX, IY, IZ)=U(IX, IY, IZ)

VI(IX, IY, IZ)=V(IX, IY, IZ)

V2(IX, IY, IZ)=V(IX, IY, IZ)

WI(IX, IY, IZ)=W(IX, IY, IZ)

25 W2(IX, IY, IZ)=W(IX, IY, IZ)
MM=0
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C

C
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180

C

C

C

C

C

C

DO 1200

MM=MM+ 1

DO 180

DO 180

DO 180

HEE=O

HWW=O

HNN=O

HSS=O

HTT=O

HBB=O

AUX=O

BVY=O

CWZ=O

IT=I,IEND

IX=2,1XMAX

IY=2,1YMAX

IZ=2,1ZMAX

5*(HX(IX+I)+HX(IX

5*(HX(IX-I)+HX(IX

5*(HY(IY+I)+HY(IY

5*(HY(IY-I)+HY(IY

5*(HZ(IZ+I)+HZ(IZ

_*(HZ(IZ-I)+HZ(IZ

5*RE*UX(IX, IY, IZ)

5*RE*VY(IX, IY, IZ)

5*RE*WZ(IX, IY, IZ)

))
))
))
))
))
))

IF(DABS(AUX).LT.EPE)AUX=DSIGN(EPE,AUX)

IF(DABS(BVY).LT.EPE)BVY=DSIGN(EPE,BVY)

IF(DABS(CWZ).LT.EPE)CWZ=DSIGN(EPE,CWZ)

DPAUX=DEXP(O.5*AUX*HX(IX))

EPBVY=DEXP(O.5*BVY*HY(IY))

EPCWZ=DEXP(O.5*CWZ*HZ(IZ))

UX(IX, IY, IZ)=(U(IX-I, IY, IZ)*EPAUX+U(IX, IY, IZ)/EPAUX)

I/(EPAUX+I./EPAUX)

VY(IX, IY, IZ)=(V(IX, IY-I, IZ)*EPBVY+V(IX, IY, IZ)/EPBVY)

I/(EPBVY+I./EPBVY)

WZ(IX, IY, IZ)=(W(iX,IY, IZ-I)*EPCWZ+W(IX, IY, IZ)/EPCWZ)

I/(EPCWZ+I./EPCWZ)
CONTINUE

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR VELOCITY U IN X-DIRECTION
************************************************

DO 200 IX=2,IXMI

HE=HX(IX+I)

HW=HX(IX)

DO 200 IY=2,1YMAX

HN=0.5*(HY(IY+I)+HY(IY))

HS=0.5*(HY(IY-I)+HY(IY))

DO 200 IZ=2,1ZMAX

HT=O.5*(HZ(IZ÷I)+HZ(IZ))

HB=0.5*(HZ(IZ-I)+HZ(IZ))

VN=(HE*V(IX, IY, IZ)+HW*V(IX÷I,IY, IZ))/(HE+HW)

VS=(HE*V(IX,IY-I,IZ)+HW*V(IX÷I,IY-I, IZ))/(HE+HW)

WT=(HE*W(IX, IY,IZ)÷HW*W(IX+I,IY, IZ))/(HE+HW)

WB=(HE*W(IX,IY, IZ-I)+HW*W(IX+I,IY, IZ-]))/(HE+HW)
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C

C

C

C
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UN:(I-IY(IY+I)*U(IX, IY,IZ)+HY(IY)*U(IX, IY+I, IZ))/2./IiN

US=(HY(IY-1)*U(IX, IY, IZ)+HY(IY)*U(IX, IY-I, IZ))/2./HS

UT:(HZ(IZ+I)*U(IX, IY,IZ)+HZ(IZ)*U(IX, IY, IZ+I))/2./HT

UB=(HZ(IZ-I)*U(IX, IY, IZ)+HZ(IZ)*U(IX, IY, IZ-I))/2./HB

VX=O.5*(VN+VS)

WX=O.5*(WT+WB)

AR=O.5*RE*U(IX, IY,IZ)
BR=O.5*RE*VX

CR=O.5*RE*WY

CALL COEFF3(AR,BR,CR,HE
UMMM(IX, IY, IZ)=CF(I,I,I

UMMN(IX,

UMMP(IX,

UMNM(IX,
UMI_N(IX
UMNP(IX,

UMPM(IX,

UMPN(IX,

UMPP(IX,
I._(IX,

UNMN(IX,
UNMP(IX, IY

_(IX, IY

UNNN(IX, IY

IY, IZ)=CF(I,I,2

IY, IZ)=CF(I,I,3
IY, IZ)=CF(I,2,1

IY, IZ)=CF(I,2,2

IY, IZ)=CF(I,2,3

IY, IZ)=CF(I,3,1
IY, IZ)=CF(I,3,2

IY, IZ)=CF(I,3,3

IY, IZ)=CF(2,1,1

IY, IZ)=CF(2,1,2

,IZ)=CF(2,1,3
,IZ)=CF(2,2,1

,IZ)=CF(2,2,2

UNNP(IX, IY, IZ)=CF(2,2,3

UNPM(IX, IY, IZ)=CF(2,3,I
UNPN(IX, IY, IZ)=CF(2,3 2

I_PP(IX, IY, IZ)=CF(2,3 3

UPMM(IK, IY, IZ)=CF(3,1

UPM:q(IK,
UPMP(IX,

UPNM(IK,
UPB(IX,

UPNP(IX,

UPPM(IX,

UPPN(IX,

IY, IZ)=CF(3,1

IY, IZ)=CF(3,1

IY, IZ)=CF(3,2
IY, IZ)=CF(3,2

IY, IZ)=CF(3,2

IY, IZ)=CF(3,3
IY, IZ)=CF(3,3

1

2
3

1

2

3
1

2

UPPP(IX, IY, IZ)=CF(3,3 3
CU(IX, IY, IZ)=UNNN(IX, IY

1/O.5/(HE+HW)

,HW,HN,HS,HT,HB)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
,IZ)*RE/(I.+D*UNNN(IX,IY, IZ))

CALCULATION OF HIGHER ORDER CORRECTION TERM

FOR X MOMENTUM EQUATION

FX(IX, IY, IZ):RE*(((UX(IX+I,IY, IZ)-U(IX, IY, IZ))*UX

I(IX+I, IY,[Z)-(UX(IX, IY, IZ)-U(IX, IY, IZ))*UX(IX, IY,IZ))

2/O.5/(HE*HW)+((VN-VX)*UN-(VS-VX)*US)/HY(IY)÷((WT-WX)

3*UT-(WB-WX)'UB)/HZ(IZ))
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199
200

C

C

C
C

C

C

DEFINE THE PSEUDOVELOCITY COMPONENT IN X-DIRECTION
***************************************************

UUI=O.

CF(2,2,2)=0.

DO 199 JX=I,3
DO 199 JY=I,3

DO 199 JZ=I,3

[_I=UUI+CF(JX,JY,JZ)*U(IX+JX-2,1Y+JY-2,1Z+JZ-2)

UI(IX, IY, IZ)=(UUI+UNNN(IX, IY, IZ)*(D*UI(IX, IY, IZ)
I-FX(IX, IY, IZ)))/(I.+D*UNNN(IX, IY, IZ))

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR VELOCITY V IN Y-DIRECTION

DO 205 IY=2,1YMI

HN=HY(IY+I)

HS=HY(IY)
DO 205 IX=2,IXMAX

HE=0.5*(HX(IX+I)+HX(IX))

HW=0.5*(HX(IX-I)+HX(IX))
DO 205 IZ=2,1ZMAX

HT=0.5*(HZ(IZ+I)÷HZ(IZ))

HB=0.5*(HZ(IZ-I)+HZ(IZ))

UE=(HN*U(IX, IY, IZ)+HS*U(IX, IY+I, IZ))/(HN+HS)

UW=(HN*U(IX-I,IY, IZ)+HS*U(IX-I,IY+I, IZ))/(HN÷HS)

WT=(HN*W(IX, IY, IZ)÷HS*W(IX, IY+I, IZ))/(HN+HS)

WB=(HN*W(IX,IY, IZ-I)÷HS*W(IX, IY÷I,IZ-I))/(HN+HS)

VE=(HX(IX+I)*V(IX. IY, IZ)+HX(IX)*V(IX+I,IY, IZ))/2./HE

VW=(HX(IX-I)*V(IX, IY, IZ)*HX(IX)tV(IX-I,IY, IZ))/2./H w

VT=(HZ(IZ+I)*V(IX, IY, IZ)+HZ(IZ)tV(IX, IY, IZ+I))/2./HT
VB=(HL_IZ-I)*V(IX, IY, IZ)+HZ(IZ)*V(IX, IY, IZ-I))/2./HB

UY=O.5*(UE+UW)
WY=0.5*(WT÷WB)
AR=O.5tRE*UY

BR=O.5*RE*V(IX, IY, IZ)
CR=O.5*RE*WY

CALL COEFF3(AR,BR,CR,HE,HW,HN,HS,HT,HB)

VMMM(IX

VMM (IX
VI_P(IX
V_(IX

W'a,_N(IX

VMNP(IX

VMPM(IX,
VMPN(IX,

IY, IZ)=CF(I,I,I)

IY, IZ)=CF(I,I,2)

IY, IZ)=CF(I,I,3)

IY, IZ)=CF(I,2,1)

IY, IZ)=CF(I,2,2)

IY, IZ)=CF(I,2,3)

IY, IZ)=CF(I,3,1)

IY. IZ)=CF(Io3,2)
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C
C

C

C

C

C

C

C

C
C

C
C

C

C

C

C
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V_P(IX, IY, IZ)=CF(I,3,3)
VN_(IX, IY, IZ)=CF(2,1,1)

VN_(IX, IY, IZ)=CF(2,1,2)

VNMP(IX, IY, IZ)=CF(2,1,3)

VNNM(IX, IY, IZ)=CF(2,2,1)

VI_(IX, IY, IZ)=CF(2,2,2)

VN_(IX, IY, IZ)=CF(2,2,3)
VNPM(IX, IY, IZ)=CF(2,3,1)

VNPN(IX, IY, IZ)=CF(2,3,2)
VNPP(IX, IY, IZ)=CF(2,3,3)

VPMM(IX, IY, IZ)=CF(3,1,1)

VPMN(IX, IY, IZ)=CF(3,1,2)

VPMP(IX, IY, IZ)=CF(3,1,3)

VPNM(IX, IY, IZ)=CF(3,2,1)

VPNN(IX, IY, IZ)=CF(3,2,2)

VPNP(IX, IY, IZ)=CF(3,2,3)

VPPM(IX, IY, IZ)=CF(3,3,1)

VPPN(IX, IY, IZ)=CF(3,3,2)
VPPP(IX, IY, IZ)=CF(3,3,3)

CV(IX, IY, IZ)=VNNN(IX, IY, IZ)*RE/(I.+D*VNNN(IX, IY, IZ))

I/0.5/(HN÷HS)

FY(IX, IY, IZ)=RE*(((UE-UY)*VE-(UW-UY)*VW)/HX(IX)

I+((VY(IX, IY÷I,IZ)-V(IX, IY, IZ))*VY(IX, IY+I,IZ)-

2(VY(IX, IY, IZ)-V(IX, IY, IZ))*VY(IX, IYoIZ))/O.5/(HN+HS)

3+((WT-WY)*VT-(WB-WY)*VB)/HZ(IZ))

DEFINE THE PSEUDOVELOCITY COMPONENT IN Y-DIRECTION

WI=O.

CF(2,2,2)=0.
DO 204 JX=l,3

DO 204 JY=I,3

DO 204 JZ=I,3

204 WI=WI+CF(JX,JY, JZ)*V(IX+JX-2,IY+JY-2,IZ÷JZ-2)

205 VI(IX, IY, IZ)=(WI+VNNN(IX, IY, IZ)*(D*VI(IX, IY, IZ)

I-FY(IX, IY, IZ)))/(I.+D*VNNN(IX, IY, IZ))

CALCULATION OF FINITE ANALYTIC COEFFICIENTS

FOR VELOCITY W IN Z-DIRECTION
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DO 210 IZ=2,IZMI

HT=HZ(IZ+I)

HB=HZ(IZ)

DO 210 IY=2,IYMAX

HN=O.5*(HY(IY+I)+HY(IY))

HS=O.5*(HY(IY-I)+HY(IY))

DO 210 IX=2,1XMAX

HE=O.5*(HX(IX+I)+HX(IX))

HW=0.5*(HX(ZX-I)+HX(ZX))
UE=(HT*U(IX, IY, IZ)+HB*U(IX, IY, IZ+I))/(HT+HB)

UW=(HT*U(IX-I,IY, IZ)+HB*U(IX-I,IY, IZ+I))/(HT+HB)

VN=(HT*V(IX, IY, IZ)+HB*V(IX, IY, IZ+I))/(HT+HB)

VS=(HT*V(IX, IY-I,IZ)+HB*V(IX, IY-I,IZ+I))/(HT+HB)

WE=(HX(IX+I)*W(IX, IY, IZ)+HX(IX)*W(IX+I,IY, IZ))/2./HE

WW=(HX(IX-I)*W(IX, IY, IZ)+HX(IX)*W(IX-I,IY, IZ))/2./HW

WN=(HY(IY+I)*W(IX, IY,IZ)+HY(IY)*W(IX, IY+I,IZ))/2./HN

WS=(HY(IY-I)*W(IX, IY, IZ)+HY(IY)*W(IX, IY-I,IZ))/2./I-IS

UZ=O.5*(UE+UW)

VZ=O.5*(VN+VS)

AR=O.5*RE*UZ

BR=O.5*RE*VZ

CR=O.5*RE*W(IX, IY, IZ

CALL COEFF3(AR,BR,CR

WMMM(IX, IY, IZ)=CF(I,I,I)

WMMN(IX, IY, IZ)=CF(I,I,2)

WMMP(IX, IY, IZ)=CF(I,I,3)

WMNM(IX, IY, IZ)=CF(I,2,1)

WMNN(IX, IY, IZ)=CF(I,2,2)

WMNP(IX, IY,

WMPM(IX, IY,

WMPN(IX, IY,

WMPP(IX, IY,

WNMM(IX, IY,

WNMN(ZX,
WNMP(ZX,
WNNM(IX,
WNNN(IX, IY
WNNP(IX, IY

WNPM(IX, IY

WNPN(IX, IY

WNPP(IX, IY

WPMM(IX, IY

WPMN(IX, IY

)
,HE, HW, HN, HS, HT, HB )

IZ)=CF(I,2,3)

IZ)=CF(I,3,1)
IZ)=CF(I,3,2)

IZ)=CF(I,3,3)

IZ)=CF(2,1,1)

IY,IZ)=CF(2,1,2)

IY, IZ)=CF(2,1,3)

IY, IZ)=CF(2,2,1)

IZ)=CF(2,2

IZ)=CF(2,2

IZ)=CF(2,3

IZ)=CF(2,3

IZ)=CF(2,3

IZ)=CF(3,1

IZ)=CF(3,1

2)

3)

I)

2)

3)

I)
2)

WPMP(IX,!Y IZ)=CF(3

WPNM(IX, IY, IZ)=CF(3

WPNN(IX, IY, IZ)=CF(3

WPNP(IX, IY, IZ)=CF(3

WPPM(IX, IY, IZ)=CF(3

WPPN(IX, IY, IZ)=CF(3

,I 3)
,2 1)
,2 2)

,2 3)
,3 1)
,3,2)

WPPP(IX, IY, IZ)=CF(3,3,3)

CW(IX, IY, IZ)=W_(IX, IY, IZ)*RE/(I.+D*W_(IX, IY, IZ))
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I/0.5/(HT+HB)

FZ(IX, IY, IZ)=RE*(((UE-UZ)*WE-(UW-UZ)*WW)/HX(IX)

I+((VN-VZ)*WN-(VS-VZ)*WS)/HY(IY)+((WZ(IX, IY, IZ+I)

2-W(IX, IY, IZ))*WZ(IX, IY, IZ÷I)-(WZ(IX, IY, IZ)-W(IX,
3IY, IZ))*WZ(IX, IY, IZ))/O.5/(HT+HB))

WWI=O.

CF(2,2,2)=0.
DO 209 JX=I,3

DO 209 JY=I,3
DO 209 JZ=I,3

WWI=WWI+CF(JX,JY,JZ)*W(IX+JX-2,IY+JY-2,1Z+JZ-2)

WI_IX, IY, IZ)=(WWI+WNNN(IX, IY, IZ)*(D*WI(IX, IY, IZ)
-FZ(IX, IY,IZ)))/(I.÷D*WNNN(IX, IY, IZ))

*************************************************

CALCULATION OF MASS SOURCE FOR PSEUDOVELOCITIES
*************************************************

DO 480 IX=2, IXMAX

DO %80 IY=2, IYMAX

DO 480 IZ=2,1ZMAX

DS(IX, IY, IZ)=(UI(IX, IY, IZ)-UI(IX-I,IY, IZ))/HX(IX)

I+(VI(IX, IY, IZ)-.VI(IX, IY-I,IZ))/HY(IY)÷(WI(IX, IY,IZ)

2-WI(IX, IY, IZ-1))/HZ(IZ)

UPDATE THE PRESSURE FIELD THROUGH THE DEFINITION

OF PSEUDOVELOCITIES
*************************************************

DO 151 ITER=I,ITERP

DO 155 IY=2,IYMAX

DO 155 IZ=2,!ZMAX

DO 160 IX=2,1XMAX

AA(IX)=-CU(IX-I, IY, IZ)/HX(IX)

BB(IX)=(CU(IX, IY, IZ)+CU(IX-I,IY, IZ))/HX(IX)+

I(CV(IX,IY, IZ)+CV(IX, IY-I,IZ))/HY(IY)÷

2(CW(IX, IY, IZ)+CW(IX, IY, IZ-I))/HZ(IZ)

CC(IX)=-CU(IX, IY, IZ)/HX(IX)
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160 DD(IX)=(CV(IX, IY-I,IZ)*PR(IX, IY-I,IZ)+CV(IM, IY, IZ)

I*PR(IX, IY+I,IZ))/HY(IY)+(CW(IX, IY, IZ-I)*PR(IX, IY, IZ-I)

2+CW(_X, IY, IZ)*PR(IX, IY, IZ+I))/HZ(IZ)-DS(IX, IY,IZ)
CALL TRIDAG(2,1XMAX,AA,BB,CC,DD,T)

DO 171 IX=2,IXMAX

171PR(IX, IY, IZ)=T(IX)
155 CONTINUE

PRO=PR(IXMM, IYMAX, IZMAX)

DO 159 IX=2,IXMAX
DO 159 IY=2,IYMAX

DO 15g IZ=2,IZMAX

159 PR(iX, IY, IZ)=PR(IX, IY, IZ)-PR0
151 CONTINUE

CALCULATION OF PRESSURE BOUNDARY CONDITIONS :
FOR CONTOUR PLOT OF PRESSURE FIELD
***************************************************

156

DO 156 IX=2,1XMAX

DO 156 IY=2,1YMAX

PR(IX, IY, I)=(9.*PR_IX, IY,2)-PR(IX, IY,3))/8.-(8.*

IW(IX, IY,2)-W(IX, IY,3))*3./16./RE/HZ(2)

PR(IX, IY, IZPI)=(9.*PR(IX, IY, IZMAX)-PR(IX, IY, IZMI))/8.+

I(8.*W(IX, IY, IZMI)-W(IX, IY, IZMI-I))*3./16./RE/HZ(IZMAX)
DO 157 IY=2,1YMAX

DO 157 IZ=2,1ZMAX

PR(I,IY, IZ)=(9.*PR(2,IY, IZ)-PR(3,1Y, IZ))/8.-(8.*U(2,IY,

IIZ)-U(3,1Y, IZ))*3./16./RE/HX(2)

157 PR(
i(8.
DO

DO

PR(
IIZ)

158 PR(

IXPI, IY, IZ)=(9.*PR(IXMAX, IY, IZ)-PR(IXMI,IY, IZ))/8.÷
*U(IXMI,IY,IZ)-U(IXMI-I,IY, IZ))*3./16./RE/HX(IXMAX)
158 IX=2,1XMAX

158 IZ=2,1ZMAX

IX, I,IZ)=(9.*PR(IX,2,1Z)-PR(IX,3,1Z))/8.-(8.*V(IX,2,

-V(IX,3,1Z))*3./16./RE/HY(2)
IX, IYPI, IZ)=PR(IX, IYMAX, IZ)

CALCULATE THE SOURCE TERMS OF MOMENTUM EUATIONS
USING UPDATED PRESSURE GRADIENT TERMS

DO 301 IX=2,IXMI

DO 301 IY=2,IYMAX

DO 301 IZ=2,IZMAX

301FX(IX, IY, IZ)=FX(IX, IY, IZ)+RE*(PR(IX+I,IY, IZ)-PR(IX, IY,

IIZ))/O.5/(HX(IX).HX(IX*I))
DO 302 IY=2,1YMI

DO 302 IX=2,1XMAX

DO 302 IZ=2,1ZMAX

302 FY(IX, IY, IZ)=FY(IX, IY, IZ)+RE*(PR(IX, IY*I,IZ)-PR(IX, IY,
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IIZ))/0.51(HY(IY)+HY(IY+I))

DO 303 IZ=2,IZMI

DO 303 IX=2,IXMAX

DO 303 IY=2,IYMAX

FZ(IX, IY, IZ)=FZ(IX, IY, IZ)+RE*(PR(IX, IY, IZ+I)-PR(IX, IY,

IIZ))/O.5/(HZ(IZ)+HZ(IZ+I))

**************************************************

CALCULATION OF VELOCITY FIELD USING THE 28-POINT

FA FORMULA FOR UNSTEADY THREE-DIMENSIONAL

CONVECTIVE TRANSPORT EQUATION
**************************************************

DO 305 ITER=I,ITERU

DO 330 IY:2,IYMAX

DO 330 IZ=2,IZMAX

DO 320 IM=2,IXMI

AA(IX)=-UMNN(IX, IY, IZ)

BB(IX)=I.+D*UNNN(IX, IY, IZ)

CC(IX)=-UPNN(IX, IY, IZ)

DDIX=UMPP(IX, IY, IZ)*U2(IX-I,IY+I,IZ+I)÷UNPP(IX, IY, IZ)

I*U2(IX, IY+I,IZ+I)+UPPP(IX, IY, IZ)*U2(IX÷I,IY+I,IZ+I)

2÷UMNP(IX, IY, IZ)*U2(IX-I,IY, IZ+I)+UNNP(IX, IY, IZ)*U2

3(IX, IY, IZ+I)+UPNP(IX, IY, IZ)*U2(IX+I, IY, IZ+I)+UMMP

4(IX, IY, IZ)*U2(IX-I,IY-I,IZ+I)+UNMP(IX, IY, IZ)*U2(IX,

5IY-I,IZ+I)+UPMP(IX, IY, IZ)*U2(IX+I,IY-I, IZ+I)+UMPN(IX,

6IY, IZ)*U2(IX-I,IY+I,IZ)+UNPN(IX, IY, IZ)*U2(IX, IY+I,

7IZ;+UPPN(IK, IY, IZ)*U2(IX+I,IY, IZ)

320 DD(IX)=DDIX+UMMN(IX, IY, IZ)*U2(IX-I,IY-I, IZ)+UNMN

I(IX, IY, IZ)*U2(IX, IY-I,IZ)+UPMN(IX, IY, IZ)*U2(IX+I,

2IY-I,IZ)+UMPM(IX, IY, IZ)*U2(IX-I,IY+I,IZ-I)÷UNPM

3(IX, IY, IZ)*U2(IX, IY+I,IZ-I)+UPPM(IX, IY, IZ)*U(IX+I,

4IY+I,IZ)+UMNM(IX, IY, IZ)*U2(IX-I,IY, IZ-I)+UNNM(IX,

5IY, IZ)*U2(IX, IY, IZ-I)+UPNM(IX, IY, IZ)*U2(IX+I,IY,

6IZ-I)+UMMM(IX, IY, IZ)*U2(IX-I, IY-I,IZ-I)+UNMM(IX,

7IY, IZ)*U2(IX, IY-I, IZ-I)+UPMM(IX, IY, IZ)*U(IX+I,IY-I,

8IZ-I)+UNNN(IX, IY, IZ)*(D*U(IX, IY, IZ)-FX(IX, IY, IZ))

DD(2)=DD(2)-AA(2)*U2(I,IY, IZ)

DD(IXMI)=DD(IXMI)-CC(IXMI)*U2(IXMAX, IY, IZ)

CALL TRIDAG(2,IXMI,AA,BB,CC,DD,T)

DO 330 IX=2,IX, MI

330 U2(IX, IY, IZ)=T(IX)

DO 306 IX=I,IXMAX

DO 306 IZ=I,IZP1

306 U2(IX, IYPI, IZ)=U2(IX, IYMAX, IZ)
305 CONTINUE

DO %05 ITER=I,ITERV

DO %30 IX=2,IXMAX

DO %30 IZ=2,IZMAX

DO 420 IY=2,1YM1

AA(IY)=-VNMN(IX, IY, IZ)
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BB(IY)=I.+D*VNNN(IX, IY, IZ)

CC(IY)=-VNPN(IX, IY, IZ)

DDIY=VMPP(IX, IY, IZ)*V2(IX-I,IY+I,IZ+I)+VNPP(IX, IY, IZ)

I*V2(IX, IY+I,IZ+I)+VPPP(IX, IY, IZ)*V2(IX+I, IY+I,IZ+I)

2+VMNP(IX, IY, IZ)*V2(IX-I,IY, IZ+I)+VNNP(IX, IY, IZ)*V2(IX,

31Y, IZ+I)+VPNP(IX, IY, IZ)*V2(IX+I,IY, IZ+I)+VMMP(IX, IY, IZ)

4*V2(IX-I,IY-I,IZ+I)+VNMP(IX, IY, IZ)*V2(IX, IY-I,lZ+I)

5+VPMP(IM, IY, IZ)*V2(IX+I,IY-I,IZ+I)+VMPN(IX, IY, IZ)

6*V2(IX-I,IY+I,IZ)+VPNN(IX, IY, IZ)*V2(IX+I,IY, IZ)+VPPN

7(IX, IY, IZ)*V2(IX+I, IY+I,IZ)

420 DD(IY)=DDIY+VMMN(IX, IY, IZ)*V2(IX-I,IY-I,IZ)+VMNN

I(IX, IY, IZ)*V2(IX-I, IY, IZ)+VPMN(IX, IY, IZ)*V2(IX+I,

2IY-I,IZ)+VMPM(IX, IY, IZ)*V2(IX-I,IY+I,IZ-I)+VNPM

3(IX, IY, IZ)*V2(IX, IY+I,IZ-I)+VPPM(IX, IY, IZ)*V2

4(IX+I,IY+I,IZ-I)+VMNM(IX,IY, IZ)*V2(IX-I,IY, IZ-I)

5+VNNM(IK, IY,!Z)*V2(IX, IY, TZ-])+VPNM(IX, IY, IZ)*V2

6(IX+I,IY, IZ-])*VMMM(IX,!Y, IZ)*V2(IX-I,IY-I,IZ-I)+

7VNMM(IX, IY, IZ)*V2(IX,IY-I,IZ-I)+VPMM(IX, IY, IZ)

8*V2(IX+I,IY-I,IZ-I)+VNNN(IX, IY, IZ)*(D*V(IX, IY, IZ)

9-FY(IX, IY,IZ))

DD(2)=DD(2)-AA(2)*V2(IX, I,IZ)

DD(IYMI)=DD(IYMI)-CC(IYMI)*V2(IX, IYMAX,IZ)

CALL TRIDAG(2,1YMI,AA,BB,CC,DD,T)

DO 430 IY=2,1YMI

430 V2(IX,IY, IZ)=T(IY)

405 CONTINUE

DO 505 ITER=!,ITERW

DO 530 IX=2,1XMAX

DO 530 IY=2, IYMAX

DO 520 IZ=2,1ZMI

AA( IZ)=-WNNM(IX, IY, IZ)

BB(IZ)=I.+D*WNNN(IX, IY, IZ)

CC(IZ,:-WNNP(IX, IY, IZ)

DDIZ=WMPP([X, IY, IZ)*W2(IX-I,IY+I, IZ+I)+WNPP(IX, IY, IZ)

I*W2(IX, IY+I,IZ+I)÷WPPP(IX, IY,IZ)*W2(IX+I,IY+I,IZ+I)

2÷WMNP([X,IY, IZ)*W2(IX-I,IY, IZ+I)+WPNN(IX, IY, IZ)*W2

3(IX+I,IY,IZ)+WPNP(IX, IY,IZ)*W2(IX+I,IY,IZ+I)+WMMP

4(IX, IY, IZ)*W2(IX-I,IY-I,IZ+I)+WNMP(IX, IY, IZ)*W2

5(IX, IY-I,!Z+I)+WPMP(IX, IY, IZ)*W2(IX+I,IY-I,IZ+I)

6+WMPN(IX,IY,!Z)*W2(IX-I,IY+I,IZ)+WNPN(IX, IY, IZ)*W2

7(IX, IY+I,IZ)+WPPN(IX, IY,IZ)*W2(IX+I,IY+I, IZ)

520 DD(IZ)=DDIZ+WMM/q(IX, IY, IZ)*W2(IX-I,IY-I,IZ)+WNMN

I(IX, IY, IZ)*W2(IX, IY-I, IZ)+WPMN(IX, IY, IZ)*W2(IX+I,

21Y-I,IZ)+WMPM(IX, IY, IZ)*W2(IX-I,IY+I, IZ-I)+WNPM

3(IX, IY, IZ)*W2(IX,IY+I, IZ.-I)+WPPM(IX, IY,IZ)*W2

4(IX+I,IY+I, IZ-I)+WMNM(IX, IY, IZ)*W2(IX-I,IY, IZ-I)

5+WMNN(IX,!Y, IZ)*W2(IX-I,IY, IZ)+WPNM(IX,IY, IZ)*

6W2(IX÷I,IY, IZ-I)+WMMM(IX, IY, IZ)*W2(IX-I,IY-I,IZ-I)

7_WNMM(IX,IY, IZ)*W2(IX, IY-I,IZ-I)+WPMM(IX, IY, IZ)

8*W2(IX+I,IY-I,IZ-I)÷WNNN(IX,IY,IZ)*(D*W([K, IY,IZ)

9-FZ(IX, IY, IZ)_
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530

506

505

DD(2)=DD(2)-AA(2)*W2(IX, IY, I)

DD(IZMI)=DD(IZMI)-CC(IZMI)*W2(IX, IY, IZMAX)
CALL TRIDAG(2,1ZMI,AA,BB,CC,DD,T)

DO 530 IZ=2,IZMI

W2(IX, IY, IZ)=T(IZ)
DO 506 IZ=I,IZMAX

DO 506 IX=I, IXPI

W2(IX, IYPI,IZ)=W2(IX, IYMAX, IZ)
CONTINUE

CHECK THE CONSERVATION OF MASS

DO 680 IX=2,IXMAX
DO 680 IY=2,IYMAX

DO 680 IZ=2,1ZMAX

680 DS(IX, IY, IZ)=(U2(IX, IY, IZ)-U2(IX-I,IY, IZ))/HX(IX)

i+(V2(IX, IY, IZ)-V2(IX, IY-I,IZ))/HY(IY)+(W2(IX, IY, IZ)

2-W2(IX, IY, IZ-I))/HZ(IZ)

*****************************************************

CALCULATION OF PRESSURE-CORRECTION IN TERMS OF

MASS SOURCE TERM

DO 651 ITER=I,ITERP
DO 655 IY=2,1YMAX

DO 655 IZ=2,IZMAX

DO 660 IX=2, IXMAX

AA(IX)=-CU(IX-I,IY, IZ)/HX(IX)

BB(IX)=(CU(IX, IY, IZ)+CU(IX-I,IY, IZ))/HX(IX)+(CV
I(IX, IY, IZ)÷CV(IX, IY-I,IZ))/HY(IY)+(CW(IX, IY, IZ)

2÷CW(IX, IY, IZ-I))/HZ(IZ)

CC(ZX)=-CU(IX, IY, IZ)/HX(IX)
660 DD(IX)=(CV(IX, IY-I,IZ)*PP(IX, IY-I,IZ)+CV(IX, IY, IZ) *

IPP(IX, IY+I,IZ))/HY(IY)+(CW(IX, IY, IZ-I)*PP(IX, IY, IZ-])

2+CW(IX, IY, IZ)*PP(IX, IY, IZ+I))/HZ(IZ)-DS(IX, IY, IZ)

CALL TRIDAG(2,1XMAX,AA,BB,CC,DD,T)
DO 671 IX=2,IXMAX

671 PP(IX, IY, IZ)=T(IX)
655 CONTINUE

PPO=PP(IXMM, IYMAK, IZMAX)
DO 659 IX=2,1XMAX

DO 659 IY=2,1YMAX

DO 659 IZ=2,IZMAX

659 PP(IX, IY, IZ)=PP(IX, IY, IZ)-PPO
651 CONTINUE
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CORRECT THE VELOCITY FIELD USING THE

VELOCITY-CORRECTION FORMULA
***************************************************

DO 700 IX=I, IXMAX

DO 700 IY=2,1YMAX

DO 700 IZ=2, IZMAX

UI(IX, IY, IZ)=U(IX, IY, IZ)

700 U(IX, IY, IZ)=U2(IX, IY, IZ)-CU(IX, IY, IZ)*

I(PP(IX+I, IY, IZ)-PP(IX, IY, IZ))

DO 701 IX=I, IXMAX

DO 7011Z=I,IZP1

701U(IX, IYPI,IZ)=U(IX, IYMAX, IZ)

DO 750 IY=I, IYMAX

DO 750 IX=2,IXMAX

DO 750 IZ=2,IZMAX
VI(IX, IY, IZ)=V(IX, IY, IZ)

750 V(IX, IY, IZ)=V2(IX, IY, IZ)-CV(IX, IY, IZ)*

I(PP(IX, IY+i, IZ)-PP(IX, IY, IZ))

DO 800 Ix=a, IXMAX

DO 800 IY=2,1YMAX

DO 800 IZ=I,IZMAX

WI(IX, IY, IZ)=W(IX, IY, IZ)

800 W(IX, IY, IZ)=W2(IX, IY, IZ)-CW(IX, IY, IZ)*

I(PP(IX,[Y, IZ*I)-PP(IX, TY, IZ))

DO 801 IZ=I,IZMAX

DO 801 IX=I,IXPI

801 W(IX, IYPI,IZ)=W(IX, IYMAX, IZ)

IF(MM.LT.NM) GO TO 1200

MM=0

WRITE(6,1600)IT

FORMAT(//SX,'NO. OF TIME STEPS =',15)

WRITE(6,2101)

FORMAT(///5X,'VELOCITY IN X-DIRECTION U =')

DO Ii01 IX=I,IXMAX

DO II01 IY=I,IYP]

WRITE(6,1350)(U(IX, IY, IZ),IZ=I,IZPI)

WRITE(6,2102)

FORMAT(///5X,'VELOCITY IN Y-DIRECTION V =')

DO 1102 IY=I, IYMAX

DO 1102 IZ=I, IZPI

WRITE(6,1350)(V(IX, IY, IZ),IX=I,IXPI)

WRITE(6,2103)

FORMAT(///5X,'VELOCITY IN Z-DIRECTION W=')

DO 1103 IZ=I, IZMAX

DO 1103 IY=I,IYPI

WRITE(6,1350)(W(IX, IY, IZ),IX=I,IXPI)

WRITE(6,2104)

FORMAT(///5X,'PRESSURE FIELD PR=')

DO Ii04 [Z=I,IZPI

DO 1104 IY=I,[YP]

1600

2101

II01

2102

1102

2103

1103

2104



1104

2105

1105

1350

1200

C

C
C

C
C

C

C
C

C

C

C

C
C

C

C

C

C

C

C

C
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WRITE%3,1350)(PR(IX, IY, IZ),IX=I,IXPI)

WRITE(6,2105)
FORMAT(///5X,'CONSERVATION OF MASS ')
DO 1105 IZ=2,IZMAX

DO 1105 IY=2,IYMAX

WRITE(6,1350)(DS(IX,IY, IZ),IX=2,IX MAX)

FORMAT(7FII.6)
CONTI_JE

CALL EXIT

END

SUBROUTINE TRIDAG(IF,L,A,B,C,D,V)

IMPLICIT REAL*8(A-H,O-Z)

DIMENSION A(18), B(18), C(18) ,D( 18), V(18) ,BETA(18),

IGAMMA (18)
BETA( IF)=B(IF)
GAMMA(IF) =D( IF)/BETA(IF)
IFPI=IF+I

DO 1 I=IFPI, L

BETA( I)=B( I )-A( I )*C( I-I)/BETA(I-l)

GAMMA( I)=(D( I )-A(I)*GAMMA(I-l) )/BETA( I )

V(L) =GAMMA(L)
LAST=L- IF

DO 2 K=1,LAST

I=L-K

V( I )=GAMMA( I )-C( I )*V( I+I)/BETA( I )
RETURN

END

**************************************************

SUBROUTINE COEFF3 TO CALCULATE THE FINITE ANALYTIC

COEFFICIENTS FOR GENERAL NONUNIFORM GRID LOCAL

ELEMENT

SUBROUTINE COEFF3(AR,BR,CR,HE,HW,HN,HS,HT,HB)

IMPLICIT REAL*8(A-H,O-Z)

COMMON/AAA/CF(3,3,3)
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I0

PI=3. 141592653589793D0

EPE=O. 0001

MAX=5

JX=I

JY= 1

JZ=I

IF(HE.LT.HW) GO TO 2
JX=- 1

AR=-AR

IF(HN.LT.H3) GO TO 3
JY=- 1

BR=- BR

IF(HT.LT.HB) GO TO 4

JZ=- 1

CR=-CR

IF(DABS(AR).LT.EPE)AR=DSIGN(EPE,AR)

IF(DABS(BR).LT.EPE)BR=DSIGN(EPE,BR)

IF(DABS(CR).LT.EPE)CR=DSIGN(EPE,CR)
ABC2=AR*AR+BR*BR+CR*CR

HX=DMINI(HE,HW)

HY=DMINI(HN,HS)

(HT,HB)HZ=DMINI

AH=AR*HX

BK=BR*HY

CL=CR*HZ

EPA=DEXP

EPB=DEXP
(-AH)

(-BK)

EPC=DEXP (-CL )

HXY2 =HX* HX/HY/HY

HXZ2 =HX* HX/HZ/HZ
EA=O.

EAA=0.

EBB=O.

ECC=O.

DO i0 I=I,M_

DO I0 J=I,MAX

ZI=(I-O.5)*PI

ZJ=(J-0.5)*PI

PWR=(-I. )**(I+J)*ZI*ZJ

ABCX=DEXP ( (ABC2 ÷Z I * Z I/HY/HY +ZJ * ZJ/HZ/HZ )* *O. 5 *HX )

ABCY=DEXP ( (ABC2 +Z I * Z I/HZ/HZ +ZJ * Z J/HX/HX )* *O. 5 *HY )

ABCZ=DEXP ( (ABC2 ÷Z I * Z I/HX/HX +ZJ * Z J/HY/q_Y )* *O. 5 *HZ )

COSHX=PWR/( ABCX+ I./ABCX )

COSHY=PWR/( ABCY+ I./ABCY )

COSHZ=PWR/( ABCZ÷ I./ABCZ )

EA=EA+ (COSHY/( CL*CL+ZJ* ZJ )+COSHZ/( BK*BK+ZJ* ZJ ) )/

1 (AH*AH+ZI*ZI)**2

EAA=EAA÷ COSHX/( (BK*BK+Z I*Zl )* (CL*CL+ZJ* ZJ ) )* *2

EBB=EBB+COSHY/( (CL*CL+Z I*Z I )• (AH*AH_ZJ* ZJ ) )* *2

ECC=ECC+COSHZ/( (AH*AH+Z I *ZI )* (BK*BK+ZJ*ZJ) )**2

COSHA=O. 5*EPA÷O. 5/EPA
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COSHB=O.5*EPB+0.5/EPB

COSHC=0.5*EPC+O.5/EPC

COTHA=(I.÷EPA*EPA)/(I.-EPA*EPA)

COTHB=(I.+EPB*EPB)/(I.-EPB*EPB)

COTHC=(I.÷EPC*EPC)/(I.-EPC*EPC)

FI=O.125/COSHA/COSHB/COSHC

EB=EA*HXY2+(I./BK/COTHB-HXY2/AH/COTHA)/2.*FI

EC=EA*HXZ2+(I./CL/COTHC-HXZ2/AH/COTHA)/2.*FI

FA=2 *AH*COTHA*EA

FB=2 *BK*COTHB*EB

FC=2 *CL*COTHC*EC

GA=4 *BK*CL*COTHB*COTHC*E_J%

GB=4 *AH*CL*COTHA*COTHC*EBB

GC=4 *AH*BK*COTHA*COTHB*ECC

P=FI-FA-FB-FC+GA+GB+GC

QA=2.*COSHA*(FA-GB-GC)

QB=2.*COSHB*(FB-GA-GC)

QC=2.*COSHC*(FC-GA-GB)
RA=4.eCOSHB*COSHC*GA

RB=4.*COSHA*COSHC*GB

RC=4.*COSHA*COSHB*GC

CNNN=((AH/COTHA+BK/COTHB+CL/COTHC)/2.-

I(AH*AH*EA+BK*BK*EB+CL*CL*EC)/FI)/ABC2
CNET=P*EPA*EPB*EPC

CNWT=P/EPA*EPB*EPC

CSET=P*EPA/EPB*EPC

CSWT=P/EPA/EPB*EPC

CNEB=P*EPA*EPB/EPC

CNWB=P/EPA*EPB/EPC

CSEB=P*EPA/EPB/EPC

CSWB=P/EPA/EPB/EFC

CNCT=QA*EPB*EPC

CSCT=QA/EPB*EPC

CNCB=QA*EPB/EPC

CSCB=QA/EPB/EPC

CECT=QB*EPA*EPC

CWCT=QB/EPA*EPC

CECB=QB*EPA/EPC

CWCB=QB/EPA/EPC

CNEC=QC*EPA*EPB

CNWC=QC/EPA*EPB

CSEC=QC*EPA/EPB

CSWC=_C/EPA/EPB
CEC=RA*EPA

CWC=RA/EPA

CNC=RB*EPB

CSC=RB/EPB

CTC=RC*EPC

CBC=RC/EPC

IF(DABS(HE-HW).LT.EPE.AND.DABS(HN-HS).LT.EPE.AND.

IDABS(HT-HB).LT.EPE)GO TO 500



ORIGINAL PAGE IS 3 9 2
OF POOR QUALITY

T
HXI=DMAXI(HE,HW)

HYI=DMAXI(HN,HS)

HZI=DMAXI(HT,HB)

AHI=AR*HXI

BKI=BR*HYI

CLI=CR*HZI

SEW=HXI*(DEXP(2.*AH)-I.)+HX*(DEXP(-2.*AHI)-I.)

TNS=HYI*(DEXP(2.*BK)-I.)+HY*(DEXP(-2.*BKI)-I.)

RTB=HZI*(DEXP(2.*CL)-I.)+HZ*(DEXP(-2.*CLI)-I.)

S=(EPA*EPA+I./EPA/EPA-2.)*HXI/SEW

SI=S-I.

S2=S*HX/HXI

S3=I.-SI-$2

T=(EPB*EPB+I./EPB/EPD-2.)*HYI/TNS

TI=T-I.

T2=T*HY/HYI
T3=I.-TI-T2

R=(EPC*EPC+I./EPC/EPC-2.)*HZI/RTB
RI=R-I.

R2=R*HZ/HZl

R3=I.-RI-R2

FP=I.-S3*CWC-T3*CSC-R3*CBC-S3*T3*CSWC-S3*R3*CWCB

I-T3*R3*CSCB-S3*T3*R3*CSWB

CF(2+JX,2÷JY,2+JZ)=(CNET+SI*CNWT+TI*CSET+RI*CNEB +

ISI*TI*CSWT+TI*RI*CSEB+SI*RI*CNWB+SI*TI*RI*CSWB)/FP

CF(2-JX,2+JY,2+JZ)=S2*(CNWT+TI*CSWT+RI*CNWB+TI*RI

I*CSWB)/FP

CF(2+JX,2-JY,2+JZ)=T2*(CSET+SI*C WT+RI*CSEB+SI*RI

I*CSWB)/FP

CF(2+JX,2+JY,2-JZ)=R2*(CNEB+SI*CNWB+TI*CSEB+SI*TI

I*CSWB)/FP

CF(2-JX,2-JY,2+JZ)=S2*T2*(CSWT+RI*CSWB)/FP

CF(2+JX,2-JY,2-JZ)=T2*R2*(CSEB+SI*CSWB)/FP

CF(2-JX,2+JY,2-JZ)=S2*R2*(CNWB+TI*CSWB)/FP

CF(2-JX,2-JY,2-JZ)=S2*T2*R2*CSWB/FP

CF(2+JX,2,2+JZ)=(CECT+SI*CWCT+T3*CSET+RI*CECB+SI*RI

I*CWCB+T3*RI*CSEB+SI*T3*CSWT÷SI*T3*RI*CSWB)/FP

CF(2,2+JY,2+JZ)=(CNCT+S3*CNWT+TI*CSCT+RI*CNCB+S3*TI

I*CSWT+S3*RI*CNWB+TI*RI*CSCB+S3*TI*RI*CSWB)/FP

CF(2+JX,2+JY,2)=(CNEC+SI*CNWC+TI*CSEC+R3*CNEB+SI*TI

I*CSWC+SI*R3*CNWB+TI*R3*CSEB+SI*TI*R3*CSWB)/FP

CF(2-JX,2,2+JZ)=S2*(CWCT+T3*CSWT+RI*CWCB+T3*RI*CSWB)/FP

CF(2,2-JY,2+JZ)=T2*(CSCT+S3*CSWT+RI*CSCB+S3*RI*_SWB)/FP

CF(2,2+JY,2-JZ)=R2*(CNCB+S3*CNWB+TI*CSCB+S3*TI*CSWB)/FP

CF(2-JX,2÷JY,2)=S2*(CNWC+R3*CNWB+TI*CSWC+TI*R3*CSWB)/rP

CF(2+JX,2-JY,2)=T2*(CSEC÷R3*CSEB÷SI*CSWC+SI*R3*CSWB)/¥P

CF(2÷JX,2,2-JZ)=R2*(CECB+T3*CSEB+SI*CWCB+SI*T3*CSWB)/FP

CF(2-JX,2,2-JZ)=S2*R2*(CWCB+T3*CSWB)/FP

CF(2,2-JY,2-JZ)=T2*R2*(CSCB+S3*CSWB)/FP

CF(2-JX,2-JY,2)=S2*T2*(CSWC+R3*CSWB)/FP
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CF(2,2,2+JZ)=(CTC+RI*CBC+S3*CWCT÷T3*CSCT+S3*RI*CWCB

I+T3*RI*CSCB+S3*T3*CSWT+S3*T3*RI*CSWB}/FP

CF(2+JX,2,2)=(CEC+SI*CWC+T3*CSEC+R3*CECB+T3*SI*CSWC

I+R3*SI*CWCB+T3*R3*CSEB+T3*R3*SI*CSWB)/FP

CF(2,2+JY,2)=(CNC+TI*CSC+S3*CNWC+R3*CNCB+S3*TI*CSWC

I+R3*TI*CSCB+S3*R3*CNWB+S3*R3*TI*CSWB)/¥P

CF(2,2,2-JZ)=R2*(CBC+S3*CWCB÷T3*CSCB+S3*T3*CSWB)/FP

CF(2-JX,2,2)=S2*(CWC+R3*CW_B÷T3*CSWC+T3*R3*CSWB)/FP'

CF(2,2-JY,2)=T2*(CSC+S3*CSWC+R3*CSCB+S3*R3*CSWB)/FP

CF (2,2,2 )=CNNN/FP

GO TO 501

CF(2+JX,2+JY,2+JZ)=CNET

CF(2+JX,2+JY,2-JZ)=CNEB

CF(2+JX,2-JY,2+JZ)=CSET

CF(2+JX,2-JY,2-JZ)=CSEB

CF(2-JX,2+JY,2+JZ)=CNWT

CF(2-JX,2+JY,2-JZ)=CNWB

CF(2-JX,2-JY,2+JZ)=CSWT

CF(2-JX,2-JY,2-JZ)=CSWB

CF(2+JX,2÷JY,2)=CNEC

CF(2+JX,2-JY,2)=CSEC

CF(2-JX,2+JY,2)=CNWC

CF(2-JX,2-JY,2)=CSWC

CF(2+JX,2,2+JZ)=CECT

CF(2+JX,2,2-JZ)=CECB

CF(2-JX,2,2+JZ)=CWCT

CF(2-JX,2,2-JZ)=CWCB

CF(2,2+JY,2+JZ)=CNCT

CF(2,2+JY,2-JZ)=CNCB

CF(2,2-JY,2÷JZ)=CSCT

CF(2,2-JY,2-JZ)=CSCB

CF(2+JX,2,2)=CEC

CF(2-JX,2,2)=CWC

CF(2,2+JY,2)=CNC

CF(2,2-JY,2)=CSC

CF(2,2,2+JZ)=CTC

CF(2.2,2-JZ)=CBC

CF(2,2,2 )=CNNN
RETURN

END



ORIGINAL PAg_ IS
OF POOR QUALITY

394

!

REFERENCES

i °

2.

2.

7.

Rodche, P. J., "Computational Fluid Mechanics"•
Hermosa Publishers, 1972.

Desai, d. S. • "Elementary Finite Element Method",
Prentice-}lall• 19"19.

Chen, C. J. and Li, P., "Finite Differential Method

in }!eat Conduction-Application of Analytic Solution

Technique", ASME Paper 79-WA/HT-50, December 2-7,
1979. A'SMF W_nter Annulet Meeting, New York, N.Y. ,1979.

('hen, C. J. and Li, P., "The i'in_t_,, Analytic Method

for Steddy and Unsteady ,{eat Trapsfer Problems",

ASME Paper 80-}!T-86, July 27-30, 1980, ASME/AIChE
National !{e_t Transfer Conference• Orlando, FL.

Chen, C. J., N,taeri-Neshat, }1. and Ho, K. S., "Finite

Analytic Numerical Solution of Heat Transfer in

Two-DJmens[on,_] Cavity Flow", ASME Paper• HTD, Vo].

13, ASME W[nt,'r Annual Meeting, November• 1980,

Chicago, [11. !,p. 49-BI. Also Jotmnal of Numerical

hedt Transtr,,r vo] 4 [,p 17n_1_7 1981

Chen, I'. J., Na._;eri-Neshat, H. and l,i, P., " The

f [nite Analyti,' Method- Application of Analytic

Solutio_ Techniques; to the Nuraeri_'dl Solutions of

Ordinary and Partial Different ial Equations", Report

[:CJC-I-80• Energy D_vi,';ion, The tlniversity of Iowa,
Iowa City, Iowa. Jan. 1980.

Chen, C.J. and Yoon, Y. '{., "Finite Analytic Numerical

Solution ot Axisvmmotric Navier-:;tokes and Energy
I:qua_ ion':. A:_M!: _'aper ,q.,'-'"v-q2, ]n,q2.

Chen, _'. J. an( ] Oba'..;it_, K., "i'[nite Analvl [_" Numerical

_;olution of '{e,,_ Tr',lnsf,_r ,lnd Flow P._,,;t a Square
Channel Cavity", 8:'-[!IFC-q3. The 7th International

Heat Transfor _'onferenc,,, MGnchen. Sept. 6-10, 1982.



ORIG_N,%L PAG_ IS

OF POOR QUALt'PI',
395

9. Spadling, D. B., " A Novel Finite Difference

Formulation for Differential Expressions Involving

Both First and Second Derivatives", International

Journal for Numerical Methods in Engineering, vol. 4,

pp. 551-559, 1972.

I0. Runchal, A. K., "Convergence and Accuracy of Three

Finite Difference Schemes for a Two-Dimensional

Conduction and Convection Problem", International

Journal for Numerical Methods in Engineering, vol. 4,

pp. 541-550, 1972.

Ii.

12.

13.

14.

15.

16.

17.

18.

Patankar, S. V., "Numerical Heat Transfer and Fluid

Flow", McGraw-Hill, 1980.

Raithby, G. D., "Skew Upstream Differencing Schemes

for Problems Involving Fluid Flow", Computer Methods

in Applied Mechanics and Engineering. vol. 9, pp.

153-16_, 1976.

Shay, W. A., "Development of a Second Order

Approximation for the Navier-Stokes Equations",

Computers and Fluids, vol. 9, pp279-298, 1981.

Heinrich, J. C., Huyakorn, P. S., Zienkiewicz, 0. C.

and Mitchell, A. R., "An 'Upwind' Finite Element

Scheme for Two-Dimensional Convective Transport

Equation", International Journal for Numerical

Methods in Engineering, vol. ii, pp. 131-143, 1977.

Gallagher, R. H., Oden, J. T., Taylor, C. and
"Finite Element in Fluids - vol 3"Zienkiew[cz, 0. C.,

pp. 1-22, John Wiley & Sons, 1978.

Burgers, J. M., "A Mathematical Model Illustrating

the Theory of Turbulence", Advances in Applied

Mechanics, vol. i, R. Von Mise_ and T. Von Karman,

ed., Academic Press, New York, pp. 171-199.

"OnGreenspan, D., a Best 9-point Differential

Equation Analogue of Laplace's Equation" J F. S, • °,

vol. 263, No. 5, pp1425-1430, 1957.

Raithby, G. D., "A Critical }:valuation of Upstream

Differencing Applied to Problems Involving Fluid

Flow", Computer Methods in Applied Mechanics and

Engineering, vol. 9, pp. 75-103, 1976.



ORIGINAL PAGE I$

OF. POOR QUALITY
396

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Stubley, G. D., Raithby, G. D. and Strong, A. B.,

"Proposal for a New Discrete Method Based on an

Assessment of Dicretization Errors", Numerical Heat

Transfer, vol. 3, pp 411-428, 1980.

Raithby, G. D. and Schneider, G. E., "Numerical

Solution of Problems in Incompressible Flui_: Flow:

Treatment of the Velocity-Pressure Coupling",

Numerical }|eat Transfer, vol. 2, pp. 417-a40, 1979.

Dennis, S. C. R., Ingham, r_. B. and Cook, R. N.,

"Finite-Difference Methods for Calculating Steady

Incompressible Flows in Three Dimensions", Journal

of Computational Physics, vol. 33, pp. 325-339, 1979.

Singh, K., "Finite Analytic Numerical Solution of

Two-Dimensional Navier-Stokes Equations in Primitive

Variables", M. S. Thesis, Mechanical Engineering

Program, 1981, University of Iowa, Iowa City, iowa.

Chorin, A. J., "Numerical Solution of the Navier-

Stokes Equations", Math. Comp., vol. 2?, pp745-762,

1968.

Chorin, A. J., "On the convergence of Discrete

Approximations to the Navier-Stokes Equations", Math.

Comp., vol. 22, pp341-353, 1969.

Goda, K., "A Multistep Technique with Implicit

Difference Schemes for Calculating Two- and Three-

Dimensional Cavity Flow", Journal of Computational

Physics, vol. 30, pp76-95, 1979.

Takami, H. and Kuwahara, K., "Numerical Study of

Three-Dimensional Flow within a Cubic Cavity",

Jourmal of the Physics Society of Japan, vol. 37,

No. 6, pp1695-1698, 1974.

Harlow, F. H. and Welch, J. E., "Numerical Calculation

of Time-Dependent Viscous Incompressible Flow of

Fluid with Free Surface", The Physics of Fluids,

vol. 8, pp. 2182-2189, 1965.

Patankar, S. V. and Spadling D. B., "A Calculation

Procedure for Heat, Mass and Momentum Transfer in

Three-Dimensional Parabolic Flows", International

Journdl of !!eat and Mass Transfer, vol. 15, pp. 178f-

1806, 1972.



°

29.

30.

31.

32.

33.

34.

35.

36.

37.

39.

OF POOR QUALITY 397

Lighthill, H. J., "Viscosity Effects in Sound Waves

of Finite Amplitude", in "Surveys in Mechanics".

Batchelor, G. K. and Davis, R. M., ed., Cambridge
University Press, 1956.

Taylor, T. D., Ndefo, E. and Masson, B. S., "A Study
of Numerical Methods for Solving Viscous and Inviscid

Flow Problems", Journal of Computational Physics,
vol. 9, pp. 99-119, 1972.

Burggraf, O. D., "Analytical and Numerical Studies of

the Structure of Steady Separated Flows", Journal of

Fluid Mechanics, vol. 24, part i, ppl13-151, 1966.

deVahl Davis, G. and Mallinson, G. D., "An Evaluation

of Upwind and Central Difference Approximations By a

Study of Recirculatin Z Flow", Computers and Fluids,
vol. 4, pp29-g3, 1976.

Tuann, S. Y. and Olsen, M. D., "Review of Computing

Methods for Recirculating Flows", Journal of

Computational Physics, vol. 29, pp. 1-19, 1978.

Olsen, M. D. and Tuann. S. Y.. "New Finite-Element

Result for the Square Cavity", Computers and Fluids,
vol. 7, pp123-135, 1979.

Gupta, M. M. and Manohar, R. P., "Boundary

Approximations and Accuracy in Viscous Flow

Computations", Journal of Computational Physics.
vol. 31, pp. 265-288, 1979.

Gupta, M. M., Manohar, R. P. and Noble, B., "Nature

of Viscous Flows Near Sharp Corners", Computers and
Fluids, vol. 9, No. 4, pp379-388, 1981.

Benjamin, A. S. and Denny, V. E., "On the Convergence

of Numerical Solutions for 2-D Flows in a Cavity at

Large Re", Journal of Computational Physics, vol. 33,
pp. 340-358, 1979.

Quartapelle, L., "Vorticity Conditioning in the
Computation of Two-Dimensional Viscous Flows",

Journal of Computational Physics, vol. 40, pp_53-_77,
1981.

Takem[tsu, N., "On a Finite-Difference Approximation

for th,, steady-state Navier-gtokes Equations",

Jourr_a_ o[ Computational Physics, vo!. 36, pp236-
248, 1980.



40.

ORIGINAL PriGS";S 398
OF POOR QUALITY

Greenspan, D., "Numerical Studies of Prototype Cavity

Flow Problems", Comput. J., col. 12, pp39-94, 1969.

41. Nallasamy M. and Prasad, K. K., "Numerical Studies on

Quasilinear and Linear Ellintic Equations", Journal

of Computational Physics, vo]. 15, pp. 429-_+48, 197U.

42. "On Cavity Flow atNallasamy, M. and Prasad, K. K.,

Higher Reynolds numbers", Journal of Fluid Mechanics,

vol. 79, part 2, pp. 391-41B, 1977.

43. Gosman, A. D., Pun, W. M., Runchal, A. K., Spadling,

D. B. and Wolfshtein, M., "Heat and Mass Transfer in

Recirculating Flows", Academic Press, 1969.

44. Bozeman, J. D. and Dalton, C., "Numerical Study of

Viscous Flow in a Cavlty , Journal of Computational

Physics, vol. 12, pp. 348-363, 1973.

45. Pepper, D. W. and Cooper, R. E., "Numerical Solution

of Recirculat:ng Flow By a Simple Finite Element
Recusion Rela+ion", Computers and Fluids, vol. 8,

pp. 213-223, 1980.

46. Oszwa, S., "Numerical Studies of Steady Flow in a

Two-Dimensional Square Cavity at High Reynolds

Numbers", Journal of the Physical Society of Japan,

vol. 38, No. 3, pp889-895, 1975.

47. Ghia, K. N., Hankey, W. L. and Hodge, J. K., "Study

of Incompressible Navier-Stokes Equations in Primitive

Variables Using Implicit Numerical Technique", Paper

No. 77-648, AIAA, 3rd Computational Fluid Dynamics

Conference, Albuquerque, N. Mexico, pp. 156-167, 1977.

48. Bercovier, M. and Engelman, M., "A Finite Element for

the Numerical Solution of Viscous Incompressible

Flows", Journal of Computational Physics, Vol. 30,

pp. 181-20], 1979.

49. Mills, R. D., "On the Slosed Motion Of a Fluid in a

Square Cavity" Journal of the Royal Aeronautical
Society+ vol. 69, pp. i16-!20, 1965. '

50. Pan, F. and Acrivos, A., "Steady Flows in Rectangular

Cavities", Journal of Fluid Mechanics, vo]. 28,

part 4, pp643-655, 1987.



OF pOOR QUALi"I_
399

J

51.

52.

53.

54.

55.

56.

57.

Fromm, J. E. and Harlow, F. H., "Numerical Solution

of the Problem of Vortex Street Development", The
Physics of Fluid:_; vol. 6, No. 7, pp. 975-982, 1963.

Smith, S. L. and Brebbia, C. A., "Finite-Element

Solution of Navier-Stokes Equations for Transient
Two-Dimensional Incompressible Flow", Journal of

Computational Physics, vol. 17, pp. 235-245, 1975.

Blevins, R. D., "Flow-Induced Vibration", Van

Nostrand Reinhold Company, 1977.

Prandtl, L. and Tietjens, O. G., "Applied Hydro- and

Aeromechanics", McGraw-Hill, 1934.

Chen, C. J. and Chen, H. C., "The Finite Analytic

Method- The Finite Analytic Numerical Solution for

Unsteady Two-Dimensional Navier-Stokes Equations",

vol. 6, The Finite Analytic Method Technical Report,

Iowa Institute of Hydraulic Research, The University

of Iowa, Iowa City, Iowa, August, 1981.

Cheng, W. S., "Finite Analytic Numerical Solution for

Two Dimensional Incompressible Flows Over an Arbitrary

Body Shape", M. S. Thesis, Mechanical Engineering

Program, December 1982, University of Iowa, Iowa City,
low_.

Agarwal, R. K., "A Third-Order Accurate Upwind Scheme

for Navier-Stokes Solution in Three Dimensions",

Computers in Flow Predition and Fluid Dynamics

Experiments. The Winter Annual Meeting of the American

Socity of Mechanical Engineers. Washington D. C.,

November 15-20, 1981.

!

J

[__




